DAIHATSU G200

Service manual

DAIHATSL MOTOR CO., LTD.

IMPORTANT SAFEIY NUIIGE

The vehicle is a machine comprising a great number of parts. Basically speaking, the vehicle is potentially hazard. However, one can handle it safely if he has the required knowledge.
Correct service methods and repair procedures are very vital for assuring not only the safety and reliability of a vehicle, but also the safety of service personnel concerned.
The methods and procedures contained in this manual describe in a general way the techniques which the manufacturer has recommended. Thus, they will contribute to ensuring the reliability of the products. The contents of the servicing operations come in a wide variety of ways. Moreover, techniques, tools and parts necessary for each operation are different widely from each other.
This manual does not cover all details of techniques, procedures, parts, tools and handling instructions which are necessary for these operations, for such coverage is impossible. Hence, any one who obtains this manual is expected first to make his responsible selection as to techniques, tools and parts which are necessary for servicing the vehicle concerned properly. Furthermore, he must assume responsibility for his actions in connection with his own safety.
Therefore, one should not perform any service if he is not capable of making responsible selection and/or if he can not understand the contents herein described, for this manual has been prepared for experienced service personnel.

WARNINGS, CAUTIONS AND NOTES

All these symbols have their specific purposes, respectively.

WARNING:

- This symbol means that there is the possibility of personal injury of the operator himself or the nearby workers if the operator fails to follow the operating procedure prescribed in this manual.

CAUTION:

- This symbol means that there is the possibility of damage to the component being repaired if the operator fails to follow the operating procedure prescribed in this manual.

NOTE:

- To accomplish the operation in an efficient manner, additional instructions concerning the operation are given in this section.
The following list describes general WARNINGS:
- Always wear safety glasses for eye protection.
- Use safety stands whenever a procedure requires you to be under the vehicle.
- Be sure that the ignition switch is always in the OFF position, unless otherwise required by the procedure.
- Set the parking brake when working on the vehicle.
- Operate the engine only in a well-ventilated area to avoid the danger of carbon monoxide.
- Keep yourself and your clothing away from moving parts, when the engine is running, especially from the fan and belts.
- To prevent serious burns, avoid contact with hot metal parts such as the radiator, exhaust manifold, tail pipe, catalytic converter and muffler.
- Do not smoke while working on a vehicle.
- To avoid injury, always remove rings, watches, loose hanging jewelry, and loose clothing before beginning to work on a vehicle.
- Keep hands and other objects clear of the radiator fan blades! The electric cooling fan is mounted on the radiator and can start to operate at anytime by a rise in coolant temperature or turning ON of the air conditioner switch in the case of vehicles equipped with an air conditioner. The electric cooling fan is also mounted on the condenser for air conditioner and starts to operate anytime when the air conditioner switch is turned "ON". For this reason care should be taken to ensure that the electric cooling fan motor is completely disconnected when working under the hood.

CHASSIS SERIAL NUMBER STAMPED POSITION

The chassis number is stamped on the cowl panel at the right side in the engine compartment.

MANUFACTURE'S PLATE POSITION

The manufacturer's plate is attached on the cowl panel.

CONTENTS OF MANUFACTURER'S PLATE

(1) General, Australian, Norwegian and Finnish specifications

(2) European Specification (except for Norway and Finland)

(1) Manufacturer's name, Country
(2) Vehicle model
(3) Chassis No.
(4) Engine type
(5) Engine displacement
(6) Body colors
(7) Trim code
(B) Engine number
(9) Manufacturer's name in Japanese
(10) Gross vehicle weight
(1i) Gross combination weight
(12) Maximum permissible front axle weight (13) Maximum permissible rear axle weight (14) Production moth-year (Only for AUS spec.)

ENGINE NUMBER AND ENGINE TYPE STAMPED POSITIONS

[HC, HD engine]

- The engine number is stamped on the cylinder block.
- The engine type is indicated by embossed letters on the cylinder block.

[CB engine]

- The engine number is stamped on the cylinder head.
- The engine type is indicated by embossed letters on the cylinder block.

[CB engine for Australian specifications]

- The engine number is stamped on the cylinder block.
- The engine type is indicated by embossed letters on the cylinder block.

BODY COLOR INFORMATION

Color name	Code
White	W09
Greenish gray mica	*S14
Pure red	*R19
Dark blue mica	*B23
Light turquoise metallic	*G16
Black metallic	6A5

The asterisk "*" mark indicates the employment of new color.
COLOR CODE IN THE WORLD

Color name	Color code					
	DAIHATSU	AKZO	DUPONT	Cl	SPIES HECKER	STANDOX
White	W09	DAHW09	K9344	XM48	16461	W09
Greenish gray mica	S14	DAHS 14	H9925	5GK9B	60439	S14
Pure red	R19	DAHR19	H9924	5GL1	30423	R19
Dark blue mica	B23	DAHB23	H9853	2RM2B	50330	B23
Light turquoise metallic	G16	DAHG16	H9923	5GK8B	60440	G16
Black metalic	6A5	DAH6A5	L7902	$\begin{gathered} \text { A403B or } \\ \text { B929B } \end{gathered}$	96326	6A5

TRIM CODE

A code that has been set in alphabetical order.
Seat main material
F.Y: Fabric

L: Vinyl chloride leather

VEHICLE 4-PLAN DIAGRAMS

4-Plane diagram of 3-door model

4-Plane diagram of 5 -door model

PERFORMANCE DIAGRAMS

CB engine with 5-speed manual transmission

HC-C engine with 4-speed automatic transmission

HC-E engine with 4-speed automatic

HC-E engine with $\mathbf{5}$-speed manual transmission

HD-E engine with 5-speed manual transmission

ENGINE SPECIFICATION

NOTE

* European with tropical spec. and Australian spec: 850 ± 50
${ }^{* 1}$ The lubrication oil capacity are under reconsideration. Refer to the service manual for the correct amount.

Item Engine type					CB	$\mathrm{HC}-\mathrm{C}$	HC-E	HD-E	
Cooling system	Cooling method				Water-cooled eiectromolor type	Water-cooled electromotor type	Water-cooled electromotor type	Water-cooled eleciromotor type	
	Radiator type				Corrugation type forced circulation	Corrugation type forced circulation	Corrugation type forced circulation	Corrugation lype forced circulation	
	Coolant capacity liter [Including 0.434 liter for reserve tank]		Manual transmission	European	4.7	4.7	4.7	4.7	
			General, Australian	4.7	5.5	5.1	4.7		
			Tropical spec.	4.7	5.5	5.5	-		
			Aulomatic transmission	European	-	4.6	4.6	-	
			General, Australian	-	5.4	5.4	-		
			Tropical spec.	-	5.4	5.4	-		
	Electromotor capacity W				45. 80	80, 120	80, 120	80.120	
	Water pump type				Centrifugal type bell-driven type	Centrifugal type belt-driven type	Centrifugal type bell-driven type	Centrifugal type bett-driven type	
	Thermostat type				Wax pellet type	Wax pellet type bottom by-pass type	Wax pellet type bottom by-pass type	Wax pellet type bottom by-pass type	
Air cleaner	Type				Filter paper type	Filter unwoven rabric type	Fijler unwoven fabric type	Filler unwoven fabric lype	
	Number				1	1	1	1	
Fuel system	Fuel tank	Capacity liter			45	45	50	50	
		Location			Underneath rear seat floor				
	Fuel pipe material				Rubber and steel tube				
	Fuel pump type				Diaphragm type	Diaphragm type	Electromotor type	Electromotor type	
	Fuel filter type				Filter paper type	Filter paper type	Fitter paper type (Voltex lype)	Filter paper type (Voltex type)	
	Carburetor	Manufacturer			$\begin{gathered} \text { Aisan } \\ \text { industry } \end{gathered}$	$\begin{gathered} \text { Aisan } \\ \text { industry } \end{gathered}$	-	-	
		Type			Downdraft, 2-barrel, single carburetor	Downdraft, 2-barrel, single carburetor	-	-	
		Throttle bore diameter mm (inch)			$\begin{aligned} & 28(1.10), \\ & 32(1.26) \\ & \hline \end{aligned}$	$\begin{aligned} & 28(1.10), \\ & 32(1.26) \\ & \hline \end{aligned}$	-	-	
		Venturi		arneter	mm (inch)	$18(0.71)$, $25(0.98)$ $7(0.28)$ $8(0.31)$	$21(0.83)$, $25(0.98)$ $9(0.35)$, $8(0.31)$	-	-
	Fuel injection device				-	-	$\begin{gathered} \text { Electronic } \\ \text { type } \\ \hline \end{gathered}$	$\begin{gathered} \text { Electronic } \\ \text { type } \\ \hline \end{gathered}$	
	Injector	Type of nozzle retainer			-	-	With cushion rubber type	With cushion rubber type	
		Nozzle type			-	-	Electronic controlled throttle type	Electronic controlled throttle type	
		$\begin{aligned} & \text { Injection pressure } \\ & \mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right) \end{aligned}$			-	-	$\begin{gathered} 250 \\ (2.55,18.4) \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ (2.55,18.4) \end{gathered}$	

Item Engine type						CB	$\mathrm{HC}-\mathrm{C}$	HC-E	HD-E
Engine electrical system	Ignition system	Voltage V				12 [Negative ground]	$\begin{gathered} 12 \text { [Negative } \\ \text { ground] } \end{gathered}$	12 [Negative ground]	12 [Negative ground]
		Type				Full-transistorized type battery ignition type	Fill-transistorized type battery ignition type	Full-transistorized type (ESA) battery ignition lype	Full-transistorized type (ESA) battery ignition type
		Ignition timing				BTDC $5^{\circ} \pm 2^{\circ}$ Stable revolution below 1000 rpm	BTDC $5^{\circ} \pm 2^{\circ} /$ Stable revolution below 1000 rpm	TOC $0^{\circ} \pm 2^{\circ}$ with the check comector connexded with pround terminal	DC $0^{\circ} \pm 2^{\circ}$ with conneclue coneck with ground terminal
		Firing order				1-2-3	1-3-4-2	1-3-4-2	1-3-4-2
		Distributor	Distributor type			Full-transistorized type battery ignition type			
			Performance of timing advancing mechanism	Centritugal type	M/T			ESA	ESA
					A/T	-	0\%800 mon. $14.55^{\circ} 2800 \mathrm{pmm}$	ESA	-
				Vacuum type	M/T	$0^{\circ} / \mathrm{t} 000 \mathrm{mmimg}$. $11 \%-330 \mathrm{mmHg}$	0%-100 minitg. $15^{\circ} /-410 \mathrm{mmHg}$	ESA	ESA
					A/T	-	$0^{\circ} /-100 \mathrm{~mm} \mathrm{mg}$. $10^{\circ}-300 \mathrm{mmHg}$	ESA	-
		Spark plug	Manuiacturer \& Type	NIPPONDENSO		W16EX-UNT6EXR-U	K20PR-U11	K20PR-U11	K20PR-U11
				NGK		BP5EAL/BP5EY	BKR6E-11	BKR6E-11	BKR6E-11
				BOSCH		-	-	FR7DCX	FR7DCX
				CHAMPION		-	RC9YC4	RC9YC4	-
			$\begin{aligned} & \text { Spark plug } \\ & \text { gap } \\ & \quad \mathrm{mm} \text { (inch) } \end{aligned}$	NIPPONDENSO		$\begin{gathered} 0.7-0.8 \\ (0.028-0.031) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$
				NGK		$\begin{gathered} 0.7-0.8 \\ (0.028-0.031 y \\ 0.8-0.9 \\ (0.031-0.036) \\ \hline \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$
				BOSCH		-	-	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$
				CHAMPION		-	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	$\begin{gathered} 1.0-1.1 \\ (0.039-0.043) \end{gathered}$	-
			Thread			$\mathrm{M} 14 \times 1.25$			
	Battery	Type	General specifications			34B17//55B24L	$34817 \mathrm{~L} / 366200$ Delco		36820L/Delco
			European specifications			Delco	Delco	Delco	Delco
			Australian specifications			34B17L	-	34817L/36820L	36B20L
		Capacity AH	General specifications			$27 \mathrm{Ah}, 36 \mathrm{Ah}$	27 Ah 28 An. 36 Ah	27 Ah. 28 An. 36 An	$28 \mathrm{Ah}, 36 \mathrm{Ah}$
			European specifications			36 Ah	36 Ah	36 Ah	36 Ah
			Australian specifications			27 Ah	-	$27 \mathrm{Ah}, 28 \mathrm{Ah}$	28 Ah
	Alternator	Type				Three-phase alternaling current commuting type	Three-phase allernating current commuting lype	Three-phase allernaling current commuting lype	Three-phase alkernating currenl commuting lype
		Output	MT AT	General specifications		12-50	12-60	12-60	12-60
				European specifications		12-50	12-60	12-60	12-60
				Australian specifications		12-50	12-60	12-60	12-60
				General specifications		-	12-70	12-70	-
				European specifications		-	12-70	12-70	-
				Australian specific	calions	-	12-70	12-70	-
		Regulator type				$\begin{gathered} \text { Contact } \\ \text { pointless type } \\ \text { (IC regulator } \\ \text { type) } \end{gathered}$	Contact pointless type (IC regulator type)	```Contact pointless type (IC regulator type)```	```Contact pointless type (IC regulator type)```
	Starter	Type				$\begin{gathered} \text { Magnet } \\ \text { engaging type } \end{gathered}$	$\begin{gathered} \text { Magnet } \\ \text { engaging type } \end{gathered}$	$\begin{gathered} \text { Magnet } \\ \text { engaging lype } \end{gathered}$	Magnet engaging type
		Output			V-kW	$\begin{aligned} & \quad 12-0.7 \\ & * \quad 12-0.8 \end{aligned}$	$\begin{array}{r} \star 12-0.8 \\ \star^{2} 12-1.0 \end{array}$	$\begin{array}{r} * 12-0.8 \\ * 212-1.0 \end{array}$	$\begin{aligned} & 12-0.8 \\ & *^{2} 12-1.0 \end{aligned}$
	Radio noise suppressing device					Resistive cord	Resistive cord	Resistive cord	Resistive cord

NOTE:

- Cold specifications
"Other than European and General with cold specifications
"European and General with cold specifications

POWER TRAIN SPECIFICATIONS (1)

			3-Door									
			G202		G200				G201	G200		
			FMDS	YMDS	FMDS	FMDE	FMGE	YMDE	FMSE	FPDS	FPDE	FPGE
Clutch	Mechanism from engine to transmission		Engine-clutch-transmission							Engine-fluid coupling-transmission		
	Reduction ratio from engine to transmission		1.000							2.00 (Stall torque ratio)		
	Type		Dry, single disc diaphragm							Three-element, single-stage. 2-phase		
	Operation method		Mechanically-operated type							Hydraulically-operated type		
	Facing	Dimensions mm (inch) [outer dia. \times inner dia.]	$\begin{gathered} 170 \times 110 \\ (6.69 \times 4.33) \end{gathered}$		$190 \times 132(7.48 \times 5.2)$					-		
		Material	Woven molded (asbestos-free)							-		
Transmission	Type	Forward	Constant-mesh type							Six-position in-line (with over drive switch)		
		Reverse	Selective sliding type									
	Operation method		Floor shift type									
	Gear ratio (tooth No.)	1st gear	3.090		3.090	3.181 [3.416]			3.090	2.807		
		2nd gear	1.842		1.842	1.842			1.750	1.479		
		3rd gear	1.250		1.250	1.250			1.250	1.000		
		4th gear	0.864		0.916	0.864			0.916	0.735		
		5th gear	0.707		0.750	0.707			0.750	-		
		Reverse	3.142		3.142	3.142			3.142	2.769		
Final reduction: gear	Type		Conventional type									
	Gear type		Helical gear									
	Reduction ratio		4.933	4.642>	4.642	4.266 *3.647			4.266	3.853		
Differential gear	Housing type		Integral with transmission case									
	Gear type and number		Straight bevel gear, 2-large, 2-small									

[^0]< > : Australian and General specifications with those for cold area

* : Option for except Austratian specifications and European specifications with G200LS-FMGE and G200RV-YMDE.
(2)

			5-Door								
			G202	G200							
			GMDS	GMDS	GMGS	GMDE	GMGE	GPDS	GPGS	GPDE	GPGE
Clutch	Mechanism from engine to transmission		Engine-clutch-transmission					Engine-fluid coupling-transmission			
	Reduction ratio from engine to transmission		1.000					2.00 (Stall torque ratio)			
	Type		Dry single disc diaphragm					Three-element, single-stage, 2-phase			
	Operation method		Mechanically-operated type					Hydraulically-operated type			
	Facing	Dimensions mm (inch) [outer dia. \times inner dia.]	$\begin{aligned} & 170 \times \\ & 110 \\ & (6.69 \times \\ & 4.33) \end{aligned}$	$190 \times 132(7.48 \times 5.2)$				-			
		Material	Woven moided (asbestos-free)								
Transmission	Type	Forward	Constant-mesh type					Six-position in-line (with over drive switch)			
		Reverse	Selective sliding type								
	Operation method		Floor shift type								
	Gear ratio (tooth No.)	1st gear	3.090	3.090		3.181 [3.416]		2.807			
		2nd gear	1.842	1.842		1.842		1.479			
		3rd gear	1.250	1.250		1.250		1.000			
		4 th gear	0.864	0.916		0.864		0.735			
		5th gear	0.707	0.750		0.707		-			
		Reverse	3.142	3.142		3.142		2.769			
Final reduclion gear	Type		Conventional type								
	Gear type		Helical gear								
	Reduction ratio		$\begin{gathered} 4.933 \\ <4.642> \end{gathered}$	4.642		$4.266 * 3.647$		3.853			
Differenlial gear	Housing type		Integral with transmission case								
	Gear type and number		Straight bevel gear, 2-large, 2-small								

(3)

ltem				3-Door									
				G202		G200				G201	G200		
				FMDS	YMDS						FPDS	FPDE	FPGE
Running system	Front axle	Type		Ball joint type									
		Toe-in	mm (inch)						39)				
		Cambe											
		Caster											
		King-p inclina	ion angle										
		Trail	mm (inch)					9.0	.35)				
	Rear	Toe-in	mm (inch)						039)				
	axle	Camb											
	Tire	Type	Front wheel Rear wheel	$* 6.1$ 145 155	$\begin{aligned} & -13 \\ & \text { OR13 } \\ & \text { OR13 } \end{aligned}$		$\begin{aligned} & \text { OR13 } \\ & \text { OR14 } \end{aligned}$	$\begin{aligned} & 165 / \\ & 165 / \end{aligned}$	$\begin{aligned} & \text { 5R14 } \\ & \text { OR13 } \end{aligned}$	175/60R14		$\begin{aligned} & 45 / 80 \mathrm{P} \\ & 155 / 80 \mathrm{P} \\ & 65 / 70 \mathrm{P} \end{aligned}$	
		Rim	Front wheel Rear whee!	13×4.5	$[13 \times 5 \mathrm{l}$]		4.5. J 13	$\times 5 \mathrm{~J}, 14$	5 JJ]	$14 \times 5 \mathrm{~J}$		4.5J	- 5J]

General specifications
[]: Option for G200 and G201
GSM00020-00000
(4)

Item				5-Door								
				G202	G200							
				GMDS	GMDS	GMGS	GMDE	GMGE	GPDS	GPGS	GPDE	GPGE
Running system	Front axle	Type		Ball joint type								
		Toe-in	mm(inch)					1 (0.039)				
		Camb						$0^{\circ} 20^{\prime}$				
		Caster						$1^{\circ} 55^{\prime}$				
		Kinginclina	ion angle					$12^{\circ} 0^{\prime}$				
		Trail	mm (inch)					9.0 (0.3				
	Rear	Toe-in	mm (inch)					4 \{0.15				
	axle	Camb						-40'				
	Tire	Type	Front wheel	6.15-13 145/80R13 155/80م13		$\begin{aligned} & \text { OR13 } \\ & \text { OR14 } \end{aligned}$		5R14 OR13			$\begin{aligned} & \text { RR13 } \\ & \text { OR13 } \\ & \text { RR13 } \end{aligned}$	
		Rim	Front wheei Rear wheel	$\begin{aligned} & 13 \times 4.5 \mathrm{~J} \\ & {[13 \times 5 \mathrm{~J}]} \end{aligned}$				4.5. ${ }^{\text {[}}$	5J, 14	5J]		

LAMP SPECIFICATIONS

Item Lamp			Wattage	Remarks
Headlamp	Butb specifications	Halogen	55/60	
Front		Clearance lamp	5	
		Turn signal lamp	21	
Side turn signal lamp			5	
Rear combination lamp		Stop/tail lamp	21/5	
		Tail tamp (only vehicles equipped with rear fog lamp)	5	
		Turn signal lamp	21	
		Back-up lamp	21	
		Rear fog lamp	21	
License plate lamp			5	
Room lamp (Interior light)			10	
Spot lights (Inside mirror)			3.6	
Luggage lamp			5	
High-mount stop lamp			21	

MAIN SERVICE SPECIFICATIONS (1)

(2)

Item	Vehicle mode!		5-Door								
			$\begin{array}{\|c\|} \hline \text { G202 } \\ \hline \text { GMDS } \\ \hline \end{array}$	G200							
				GMDS	GMGS	GMDE GM	GMGE	GPDS	GPGS	GPDE	GPGE
Tire inflation pressure $\mathrm{kPa}\left(\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	Tire size		6.15-13	145/80R13		155/80R13	175/60R14		165/65R14	4 165/70R13	
	Front		180 (1.8. 26)	$\begin{aligned} & 180(1.8 .26) \\ & 200(2.0,29) \text { AUS } \end{aligned}$		180 (1.8.26)	$180(1.8,26)$		180 (1.8, 26)) $180(1.8,26)$	
	Rear		$180(1.8,26)$	$\begin{aligned} & 180(1.8,26) \\ & 200(2.0,29) \text { AuS } \end{aligned}$		$180(1.8,26)$	$180(1.8,26)$		180 (1.8, 26)) 180 (1.8.26)	
Spare tire inflation pressure $\mathrm{kPa}\left(\mathrm{kgt} / \mathrm{cm}^{2}, \mathrm{psi}\right)$			$420(4.2,60)$								
Wheel nuts tightening torque $\quad \mathrm{N} \cdot \mathrm{m}(\mathrm{kgf}-\mathrm{m})$			88.2-117.6 (9-12)								
Accelerator pedal free play mm			3-8								
Engine idle speed rpm	Type of engine		CB	$\mathrm{HC}-\mathrm{C}$		HC-E		$\mathrm{HC}-\mathrm{C}$		HC-E	
	M/T		850 ± 50	850 ± 50		800 ± 50		-		-	
	A/T		-	-		-		800 ± 50		850 ± 50	
Engine oil capacity liter	Engine type		CB	$\mathrm{HC}-\mathrm{C}$		HC-E		HC-C		HC-E	
	F level		2.7	3.3							
	L level		1.7	2.3							
	Oil capacity when oil filter is replaced		3.0	3.5 (3.6 for oil cooler equipped model)							
	Full capacity		3.2	3.8 (3.9 for oil cooler equipped model)						-	
Manual transmission oil capacity	Capacity liter		$2.10-2.25$							-	
	Grade		API GL-3 or GL-4							-	
	Viscosity		SAE 75W-85 or 75 W -90							-	
Automatic transmission oil capacity	Capacity liter		-							6.0	
	Drain and refill		-							2.8	
	Fluid type		-							ATF DEXRON ${ }^{\text { }}$ II	
Brake fluid	Grade		FMVSS116 DOT3 or SAE J1703								
Brake pedal (while engine is running)	Free trave $\quad \mathrm{mm}$		0.5-2.0								
	Reserve travel mm	Without A.B.S	151								
		With A.B.S	$-$	151							
Clutch pedal free travel mm			15~30								
Parking brake operating travel (when pulled by a force of $196.1 \mathrm{~N}(20 \mathrm{kgf})$)	Drum brake		4-7 notches								
	Disc brake		4-7 notches								
Exhaust emissionat tail pipe (Manufacturer's standard)	Idle CO Vol \%		1 ± 0.5	1.5 ± 0.5		0.5 (Max)					
	Idle HC max. ppm		1000	1000		100					
	Idle $\mathrm{CO}_{2} \quad \mathrm{~min} . \%$		-	12.1		14.0					

MAIN MODIFICATION POINTS COMPARED WITH FORMER MODEL

NOTE:

- This chart describes the main modification points only.
- For details, refer to the data at the end of each section of the service manual.

ENGINE

- Inlake manifold

To improve the axial lorque output characteristics at a normal range, the distance from the air cléaner to the throtle body has been shortened thus preventing intake air surging during the inerka supercharging Consequenily. Ihe output characterisucs of the axial torque have been improved lo thave a wider flat range. As a result of these moditications. the inlake manifold throtife body and a.r cleaner have been changed

- Camistral1

For erinaniced output characierislics jurirg the normat rotation range the frofte of the camshaft has been frofle of the camshat has toreen type

- Actursting bar

The adjusing bar has beeri changed to a belt tension adjuslable type by means al ari SSt

To reduce piston slap nolse. the piston-to-cylnder clearance has been decreased and also pislon profile has been changed.

For improved operation teeling.
a nonlinear link has been employed

- A 5 mm -dia coil type resislive cord lor high-frequency noise protection has
been employed

Cylinder nead cover (EF1-equipped engine only) A PCV valve has been adopted al the blow-by gas hose side In line with this modification. the shape of the cylander head cover has been changed.

- Cylinder block

For improved rigidity, the arrangement of ribs has been changed Moreover. for improved pont rigidity relative to the transmission case. the number of the bolts connecting the Iransmission case has been increased from lour to five Furthermore, the number of the knock pins has been increased so as to prevent the center oi the engine from being deviated from that of the transmission.

- Prston ring

The gap between the opening ends ol the pistor ring No. 1 nas been set to a value greater than that of the piston ring No. 2 . Consequently the residuai pressure of the second land has been reduced, thus decreasing fluttering of the piston rings As a result, the oil consumption has been reduced
-Secona ring
For reduced oil consumption, a cutout section has been added, thus mproving the oul scraping characleristucs
*Oil ring
For deduced oil consumption thin width lype oil ring has been employed Morecover, for reducing the mechanical loss of the engine. expansion rate of oil ring has been reduced

- Camshafl

Fur at higher outpul. the
protfe of the camshafi
has beern changed

To make the disintulor mainlenance-Iree. a lull ransistorized type distribulor has been adopled (Including Type CB engine)

BODY

1. Safety

(1) Coilision safety

The impact absorbing and dispersing body construction, which consists of a high-rigidity cab and a crushable body, has improved the impact absorbing characteristics against the frontal collision by 30%, compared with the former type. This body has complied with the Federal Motor Vehicle Safety Standards (occupant injury scale) which is the most stringent standard in the world.

The impact absorbing and dispersing body means a, body whereby the impact input by collision can be effectively dispersed to the high-rigidity cab by proper arrangement of body members. In this way, the degree of the deformation of the cab - (vehicle compartment) has been reduced.

(3) Empioyment of lock reinforcement

To increase the retention strength of the lock, the door lock section has been reinforced.
(4) Fuel inlet box

For enhanced safety, a rubber shield has been provided around the resin box so that the fuel system may be separated from the vehicle interior in the event of collision breakage.

(5) High-mount stop lamp (Except European specifications)
The high-mount stop lamp comes in two kinds: In one type, the stop lamp is placed in the back window. The other is a roof end spoiler built-in type. On vehicles with the general specifications, the high-mount stop lamp is optional equipment. On vehicles with the Australian specifications, the type in which the stop lamp is placed in the back window is standard equipment, whereas the roof end spoiler built-in type is optional equipment.

(6) Rear wiper

For wider rear field of vision on a rainy day, the wiping area of the wiper has been increased.

(7) Engine hood

To reduce the front/lower dead angle, the engine hood hinge height has been lowered.

(8) Inside rear view mirror

To reduce the dead angle by the inside rear view mirror, the installation height of the inside rear view mirror has been raised.

GSM00035-99999

2. Easy Operation

(1) Improvement of door closing

For reduced operating force, inclined type hinges have been employed at the door hinge.

Specifications:

Inclination angle of front door	2.5°
Inclination angle of rear door	2.0°

(2) Lock button integral type inside handle (3-door model only)
For easier operation, the locking knob has been built in the inner handle.
(3) Rotary knob type child safety (5-door model only)
For easier operation, the child proof has been changed from the hitherto-employed lever type to a rotary knob type.

3. Weight Reduction

(1) Front door window glass

For reduced mass, lightweight glass has been employed.

GSMC00037-99999

(2) Quarter window glass (3-door model only)

For reduced mass, lightweight glass has been employed.
(3) Bell crank for rear door

A resin-made one-piece type bell crank has been adopted.
(4) Blow-molding protection molding

For reduced mass, blow-molding protection molding has been employed.
Employment of blow molding also has made it possible to affix color film to the material adhesive protection molding simultaneously. Hence, it has become easier to respond to the color selection.

GSM00040-99990

4. Quietness

For reduced vibration, a high-rigidity cab, front suspension arms and principal axes of inertia type engine mountings have been employed. Furthermore, for reduced noise in the vehicle interior, sound-insulating materials have been used effectively.
(1) HIGH-RIGIDITY CAB

For improved rigidity of the cab, reinforcements have been added or the construction has been changed at the following sections constituting the cab.

GSM00044.99999
(1) Front pillar

To increase the bending and twisting rigidity at the joint section, the reinforcements at the front pillar section have been modified to such a construction that they are vertically inserted into the rocker section.

2) Rear pillar

To increase the rigidity, a roof side inner reinforcement has been added at the rear pillar.

Center pillar

To increase the bending and twisting rigidity at the joint section, the reinforcement at the center pillar section has been changed to such a construction that it is vertically inserted into the rocker section.

GSM00045-99999

(4) Dash crossmember

For enhanced rigidity, the sectional construction of the dash crossmember has been changed.

Instrument panel reinforcement

A steel pipe type instrument panel reinforcement is provided as standard equipment on all models.
(6) For enhanced rigidity, the number of the roof reinforcements has been changed from two to three, thus preventing the roof from drumming.

(7) Rocker panel

For enhanced rigidity, the sectional construction has been changed and the thickness of the plate has been increased.
(8) Wheel house brace

The joint of the wheel house outer brace and roof side inner reinforcement has been strengthened. Thus, the construction has been changed so that the whole rear pillar may sustain impacts from the suspension.

(9) Rear crossmember

The joint rigidity of the rear floor crossmember with the rocker panel has been increased.

(10) Floor tunnel reinforcement

For increased rigidity, the floor tunnef reinforcement has employed a two-division type. Furthermore, for increased rigidity at the tunnel section, the front floor center reinforcement has been extended to the longitudinal wall of the tunnel.

(11) Floor under reinforcement

For enhanced strength and rigidity, the fioor under reinforcement, which was formerly divided into the front reinforcement and rear reinforcement, has been made an integral type.

Top of rear pillar

The roof side inner reinforcement has been provided as standard equipment. Moreover, for enhanced rigidity, a larger back door opening upper inner frame has been employed and the thickness of the steel sheet has been increased.

) Others

IMPROVEMENT OF INSTALLATION RIGIDITY OF CHECK. ER BRACKET
For enhanced installation rigidity, the configuration and construction of the checker bracket have been changed.

GSMOO0055-99999

SIDE MEMBER
The spot working hole at the side member inner joint section has been abolished. Instead, for assured rigidity, the overlapping section of the inner member has been increased.
(2) INCREASED RIGIDITY OF DOOR FRAME
(1) Employment of door sash having large section

For improved rigidity at the sash section, a door sash having a large sectional construction area has been employed.
(2) Employment of large triangle bracket

For assured assistance of sash rigidity, a large-sized triangle bracket of the front door has been adopted.
(3) Employment of three-ply seal (European specifications with HD engine equipped model only) For enhanced seaing characteristics, opening weatherstrips have been provided at the front door and rear dcor.

GSM00059.99999

GSM00060-99999

(3) ENGINE MOUNTINGS

The engine mounting method has been changed from a combined three-point mounting type to such a type where the engine is supported on the principal axes of inertia. This construction makes it possible to reduce vibration during the engine idling and restrict the movement in a roll direction by means of the front stopper.

The engine rear mount and front stopper are installed to the engine support member which is installed with the bushes interposed. Thus, the engine vibration is not directly transmitted to the dash panel because of the following two vibration-proof effects; that of each part of the engine rear mount and front stopper and that of the bushes at the installation section of the engine support member. Therefore, the engine vibration is dispersed to the body through the engine support member and suspension member. Consequently, the transmitting noise to the dash panel has been reduced.

D Engine mounting right insulator

To reduce the weight, the bracket has been changed from sheet metal to aluminum casting. This has reduced the weight at the tip end of the bracket, thus increasing the rigidity.

The external shape of the engine mounting right insulator is the same on both manual transmission vehicle and automatic transmission vehicle. However, rubber characteristics are different.
(2) Engine mounting left insulator

This insulator differs in shape between the manual transmission vehicle and the automatic transmission vehicle owing to difference of the transmission holding section. The rubber characteristics are different, too.

(5) Engine mounting front insulator (Stopper) (Automatic transmission vehicle only)
On automatic transmission vehicles, a locator has been provided at the front stopper section. The locator rod converts the engine idling vibration in an up-\&- down direction during D range to the vibration in a fore- $\&$-aft direction, which is then transmitted to the high-rigidity body. Consequently, the vibration in an up-\&-down direction has been reduced at the floor and steering.

GSM00000-99999

(4) SILENCER

For reduction of vibration and noise level, insulators and silencers are affixed to the front and rear floors.

Part name	
Asphalt sheet	Dash panel insulator No. 2 sheet
	Front floor silencer side sheet
	Center fioor silencer side sheet
	Front floor silencer center sheet (HD engine equipped vehicle only)
	Center fioor silencer center sheet (HD engine equipped vehicle only)
	Rear floor sitencer No. 1 sheet (HO engine equipped vehicle only)
	Rear floor silencer No. 2 sheet
(9) Felt	Front floor silencer side pad

5. Improvement of Appearance Quality

(1) Quarter Window Glass (3-door vehicle)

In order to provide flush vehicle surface, the quarter window glass has adopted an adhesive type using urethane adhesive agent. In addition, for improved sealing performance, a molding with a reference pin for assembling use has been newly installed at the outer periphery of the glass. To conceal the adhesive sections, ceramic treatment has been performed to the outer periphery of the window glass. An opening trim is provided at the opening flange section at the body side so as to prevent personal injuries, such as a cut at hand, by the edge section.

(2) Back door glass

In order to provide flush vehicle surface, an adhesive type window has been employed.
Therefore, a spacer used as a reference during glass positioning has been newly installed.
To conceal the adhesive sections, ceramic treatment has been performed to the outer periphery of the window glass. An opening trim is provided at the opening flange section at the back door side.

) Door outside panel

For improved appearance, the door outside handle employs a built-in type key cylinder (at the front side only).

(4) Side outer panel

An integral type side outer panel has been employed, thereby abolishing the sealer at the joint section. As a result, the accuracy of the door opening has been improved.

6. Others

(1) Canvas top

(Optional equipment on some of 3 -door vehicles)

To create a sporty image, the canvas top has been made integral with a roof deflector which reduce catching-in of wind.

 Upon completion of the operation, make sure to immediately release your hand from the switch.

- Do not sit on the canvas top or lean on it.
- When you go away from the vehicle, make sure that the canvas top is fully-closed.
- Be careful in opening/closing of the cambas top after rain or washing the vehicle, the water droplets collected on the canvas top may drop into the vehicle interior.
- Do not open or close the canvas top during high-speed driving, for this practice may damage the canvas top.
- Do not perform the opening/closing of the canvas top during freezing period, snowfall or when the ambient temperature is below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$.
- Before you open the canvas top, make sure that no water or snow is present on the canvas top.

WARNING:

- When operating the switch, utmost care must be exercised to ensure that hands etc. will not be caught by the closing or opening canvas top.
- Never protrude hands or face above the opening section of the canvas top while the vehicle is moving.
- Also, do not put a long object that sticks out from the vehicle.
It may lead to an accident.

NOTE:

- For important information on cleaning and caring for your canvas top, refer to "Canvas Top Care" in Section 12.
(2) OPENING/CLOSING IN EVENT OF SWITCH FAILURE Set the ignition switch to the lock position. Remove the service hole plug.
Now, you can get access to the hexagonal hole at the lower end of the drive shaft at the roof side where the service hole plug has been removed. Insert the exclusive-use handle (hexagonal wrench) furnished with the vehicle into the hexagonal hole. The canvas top is closed when you turn the handle clockwise. Conversely, the canvas top is opened when the handle is turned counterclockwise.

GSM00000-99999

GSMC00075-99999

GSM00076-99999

POWER TRAIN

CLUTCH

The clutch is a dry single-disc type, as is the case with the hitherto-employed one. However, the clutch capacity has been increased about 10 percent, compared with the former type, thus improving the wearresistance of the clutch facing as well as feeling at the time of engagement. (HC series engine equipped vehicle)

Clutch dise

For reduced engine transmitting noise, the maximum twisting angle and twisting rigidity of the clutch disc have been increased. Moreover, JD-8 (asbestos-free type) has been employed for the facing material so as to improve anti- juddering performance.

GSM00079.99999

Clutch cover

The clutch cover comes in two kinds; one for HC and the other for HD. Each clutch cover has different assembling load.

CONTROL MECHANISM

The operation mechanism employs a cable type which features high reliability, as is the case with the conventional ones.

GSM00081-99999

Clutch release bearing

The clutch release bearing has adopted an automatic self- aligning type bearing, thus improving the durability of the diaphragm spring and reducing clutch juddering.

Clutch Release Fork

The clutch release fork is made of sintering alloy. It is installed to the clutch release lever by means of a bolt.

MANUAL TRANSMISSION

The manual transmission has employed a 5 -speed transmission.
As for the 5-speed transmission of the HC-E engine, the 5th gear (top gear) has been set to a higher speed so as to improve fuel consumption. Weight reduction of each part has been further promoted. Moreover, shifting into the reverse gear has been made easier and shift feeling has been improved. For reduced engine transmitting noise, the joint rigidity relative to the engine has been increased.

GSMC0084-99999

RANSMISSION CASE

To improve the joint rigidity of the transmission case, the number of the connecting bolts with the engine has been increased from four to five. Furthermore, ribs have been added at the engine mating surface so as to increase the strength.

In line with the change in engine rear mounting, positions of bracket installing boss have been changed and added. Moreover, a boss for the air cleaner installing bracket has been newly provided.

4-SPEED ELECTRICALLY-CONTROLLED TRANSMISSION

The 4 -speed electrically-controlled automatic transmission with lock-up mechanism has been newly employed.
This automatic transmission is mainly composed of a torque converter with lock-up clutch, a 4 -speed planetary gear unit, a hydraulic control system and an electric control system.
This automatic transmission has the following features.

- The automatic transmission ECU controls the clutches and brakes in the automatic transmission, based on the shift pattern pre-memorized in the ECU for each driving mode (Auto, Power and Easy).
- When shifting the transmission, the hydraulic line pressure in the transmission is controlled by the ECU in order to reduce transmission shift shocks.
Furthermore, when shifting the transmission, the automatic transmission ECU (A/T ECU) demands the EFi ECU to reduce the engine output for a predetermined duration of time in order to reduce transmission shift shocks.
On vehicles equipped with EFi engines, the EFi ECU retards the ignition timing according to the A/T ECU demand to reduce the engine output for predetermined length of time memorized in the EFi ECU.
- Even if the shift lever is placed to the reverse range when the vehicle speed is in excess of a certailevel, no reverse shift will take place so that the transmission may not be damaged.
- The A/T ECU monitors the operating conditions of sensors, such as the throttle sensor and vehicle speed sensor as well as the operating conditions of electrical parts, such as the shift position switches and solenoid valves. In cases where any malfunction should take place in these electrical parts, the A/T ECU memorize the malfunction as applicable diagnosis code and if malfunction occured in the important operating systems, the ATT ECU makes the warning lamp go on, thus telling the driver of the occurrence of malfunctions. In addition, the diagnosis function is provided that tells the operator of memorized malfunction contents as malfunction codes during the check service.
* For details, see the AT section.

CONSTRUCTION

System Diagram

GSM00088-99999
Hydraulic System

SUSPENSIONS

he suspensions basically inherit the hitherto-employed strut 4-wheel independent type.
The suspensions have the following remarkable features.

1. For improved rolling attitude and yawing response, the roll center height has been set to an optimum value by extending each suspension arm of the front and rear suspensions.
2. Front suspension

The front suspension has employed a front suspension member structure. This has enhanced the whole suspension rigidity and has contributed to the improved controllability.
On GTi vehicles, a suspension member (brace) has been added to the lower side of the front suspension member, thus further increasing the suspension member rigidity.

The adoption of an L-shaped arm at the lower arm has made it possible for the front bush position to be arranged in an optimum way. Consequently, the compliance steering (deflection steering) which will take place by external forces (lateral force, longitudinal force) applied to the earth-contact section of tires has been reduced. Furthermore, the anti-dive and anti-lift characteristics have been further improved.

The front axle has been set to the Vorlauf arrangement in which the wheel center is located ahead of the kingpin's center line (employment of short trail and middle caster). (The Vorlauf arrangement equals to negative Nachlauf arrangement. (Here, Nachlauf refers to an arrangement in which the wheel center is located behind the kingpin's center line.)) As a result, the forces required for turning and retaining the steering wheel have been reduced and the steering feeling has been improved.

Moreover, the kingpin offset amount has been set to an optimum value so as to reduce occurrence of flattening.
For improved riding comfort and controllability, the front suspension member upper support has been changed from a rubber compression type to a rubber shearing type.

Furthermore, the spring constant has been changed and the number of the installed bolts has been increased from two to three.
3. Rear suspension

For assured riding comfort and straightahead running stability over rough terrains, the rear suspension arm has been extended so as to reduce the change in tread. Furthermore, the camber changing amount has been set to an optimum value in order that the cornering limit and controllability during cornering as well as the yawing convergence may be improved.

STEERING SYSTEM

ie steering system has adopted the rack and pinion type steering gear, as is basically the same with the conventional steering system. However, detailed specifications have been reviewed so that the safety may be further assured and the steering feeling, stability and steering vibration may be improved.

STEERING GEAR ASSEMBLY

GSM00093-99999

MANUAL STEERING GEAR ASSEMBLY

The basic construction of the manual gear assembly is the hitherto-employed rack and pinion type.
For reduced turning effort of the steering wheel under the vehicle stationary state or during running at an extremely low speed, the rack stroke per pinion turn has been shortened.

POWER STEERING GEAR ASSEMBLY

The basic construction of the power steering gear assembly is the hitherto-employed rack and pinion type. To reduce the number of turns of the steering wheel, the fack stroke per pinion turn has been increased, thus reducing the number of the lock-to-lock turns. Moreover, for reduced turning effort, the operating characteristics of the control valve have been modified.

Specifications

Items		Former mantal steering	New manual steering	Former power steering	New power steering
Total rack stroke	mm	148.5	150.0	148.5	150.0
Inner turning angle	degree	39.85	39.78	39.85	39.78
Outer turning angle	degree	34.95	34.54	34.95	34.54
Ackerman steering angle	degree	29.19	29.33	29.19	29.33
Number of pinion teeth.		6	5	6	7
Rack stroke/pinion turn	mm	35.81	34.56	39.90	46.68
Number of lock-to-lock turns		4.01	4.27	3.63	3.21
Ackerman rate	\%	46	50	46	50

For enhanced accuracy of the front wheel alignment, the mounting section of the steering gear assembly has been switched from the dash panel crossmember section to the suspension member.
Furthermore, for improved steering feeling, the mounting rigidity of the steering gear assembly has been increased by reducing the offset between the installation point and the center of the steering gear.

STEERING WHEEL

GSM00095-99999

he steering wheel comes in two kinds: One is made of resin. The other is made of foamed urethane.

Resin-made steering wheel

For improved crash characteristics and improved safety, the resin-made steering wheel has been provided with two 15 mm dia. holes at the spoke sections.
Moreover, for enhanced vibration-proof characteristics, the steering wheel has employed a hollow core type. thus reducing the weight.

Foamed urethane-made steering wheel

For improved safety, the foamed urethane-made steering wheel has employed an energy absorbing pad at the steering wheel pad section.
Furthermore, for reduced weight and enhanced durability, an aluminum alloy-made core has been adopted. Moreover, flon gas used for foaming urethane has been changed to substance (HcFC123) that does not contain a chloric group.

STEERING COLUMN

For reduced vibration during the engine idling, a reinforcing bracket has been added to the steering columr Furthermore, the offset relative to the steering wheel center has been decreased by downsizing the upper bearing and arranging it at the center of the multi-use lever switch.
Moreover, a steering stay has been newly provided in order to increase the steering supporting rigidity. For reduced transmitting noise from the engine compartment, a resin bush has been provided between the intermediate shaft and the rubber cover.

POWER STEERING VANE PUMP

he vane pump is a newly-developed aluminum alloy-made pump featuring compact design and lightweight. \rightarrow In this vane pump, the supporting construction of the drive shaft (main shaft) has been switched from a cantilever construction to a both-end supporting construction. Moreover, the front side bearing has employed a ball bearing. This modification has improved the stability of rotating center of the rotor and has reduced the hydraulic pulsation. Consequently, this change has made it possible to use a high- load belt.
To prevent fretting, this front bearing has been installed by press-fitting to the pump body.
For improved oil discharging performance during a cold period, the diameter of the suction port for the vane pump working fluid has been increased. Also, the oil sump at the working fluid suction passage of the end cover has been abolished.
As a result of this abolishment of the oil sump, cavitation no longer occurs, thus reducing noise.
Moreover, for reduced noise, the cam profile has been changed from a linear profile to a curved profile, thus preventing a sudden change in speed of the vane plate. Consequently, the impact at which the vane plate hits the cam has been reduced. Furthermore, the return hole of the working fluid has been changed from a single drain construction to a double drain construction. Therefore, the volume at the oil sump section has been reduced and the probability of cavity breakage has been reduced.
The flow rate of oil for oil seal lubrication has been reduced by narrowing down the opening area (clearance between the body and the shaft) at the leak oil passage. As a result, the working fluid suction effect has 'eeen improved.
. . .e pulley for the vane pump has employed a pulley-and-boss integral type.

RESERVOIR TANK

The reservoir tank has employed a newly-designed lightweight resin-made tank.
The reservoir tank has been installed to the body by means of brackets with a sheared rubber interposed. Consequently, this has prevented vibration and noise from being transmitted to the body side.

Reservoir tank specifications

Oil capacity	(ℓ)	Max.	0.26
		0.21	

TIE ROD ENDS

The ball seat material of the tie rod end ball joint has been altered to decrease the rotating torque at the ball joint section, thus reducing the sliding resistance. This has reduced vibration that is transmitted from the tire side to the steering wheel side caused by fluttering.

BRAKES

Basically, the brake piping is a two-separate line type employing a diagonal (cross) piping. Even if either system should fail, the loss of braking forces may be kept to a minimum level.
The number of parts has been reduced so that the service may be carried out easily.
For improved braking performance, the brake master cylinder has adopted a type with a 7 -inch booster on all models except for Type HD engine-mounted vehicles and ABS-equipped vehicles. Furthermore, the inner diameter of the master cylinder is set to 19.05 mm .
Moreover, for reduced initial depressing force, the jumping amount has been increased at the booster side. On Type HD engine-mounted vehicles and ABS-equipped vehicles, the brake master cylinder has employed a center valve type with an 8 -inch booster. The inner diameter of the master cylinder is 20.64 mm .
As for the front brakes, a 13 -inch dia. disc brake has been employed on all models. For improved braking 'eeling, the brakes have been made to have such characteristics that a natural braking force can be obtained according to the brake pedal depressing force.
On Type HD engine-mounted vehicles and ABS-equipped vehicles, a ventilated disc has been employed. The front brake calipers are the same as the hitherto-employed floating caliper type. For easier service of the calipers, the calipers are installed by means of mounting brackets.
The material of the brake pad has employed non-asbestos material. Furthermore, the hitherto-employed sound detecting type wear indicator has been provided at the inner side of the pad.
As for the rear brakes, the hitherto-employed 180 mm -dia. drum brakes are used except for Type HD engine-mounted vehicles and ABS-equipped vehicles.
On Type HD engine-mounted vehicles and ABS-equipped vehicles, the hitherto-employed floating caliper type disc brakes have been adopted. The mounting position of the calipers has been switched to front side so that the routing of the parking brake cable may be performed easily. Furthermore, the adjusting method of the pad clearance has been changed from a micro adjusting type to a one-shot type.
As for the proportioning valve, a proportioning and bypass valve for cross piping use has been employed on all models.

BRAKE MASTER CYLINDER

The brake master cylinder has employed a tandem type made of aluminum alloy.
The brake master cylinder comes in three kinds: One is for G200 standard vehicles. Another is for G201 standard vehicles. The other is for ABS-equipped vehicles. On G200 standard vehicles, the master cylinder has employed a side valve type having a cylinder inner diameter of 19.05 mm (0.75 inch); on G201 standard vehicles, a side valve type having a cylinder inner
diameter of 20.64 mm (0.813 inch); on ABS-equipped vehicles, a center valve type having a cylinder inner diameter of 20.64 mm (0.813 inch).
The G201 standard vehicles and ABS-equipped vehicles share the brake master cylinder of the sam. external shape. However, a center valve is provided at the secondary piston for the ABS- equipped vehicle. Therefore, care must be exercised so as not to mistake one for the other master cylinder.

BRAKE BOOSTER

he brake booster means a device whereby the brake pedal depressing force is doubled by utilizing -difference in pressure between the negative pressure inside the intake manifold and the atmospheric pressure.
The brake booster has employed a 7 -inch single type for G200 standard vehicies; an 8-inch single type for G201 standard vehicles and ABS-equipped vehicles.

PROPORTIONING VALVE

The braking force control device means a device which prevents the rear wheels from being locked caused by the shift of loads from the rear wheels to the front wheels during the braking. The twin proportioning valve (twin P valve) is employed and installed at the center of the dash panel. The proportioning valve comes in two kinds for standard vehicles and for ABS- equipped vehicles.
In the twin P valve, the two valves are arranged in parallel. When the input fluid pressure (master cylinder fluid pressure) exceeds the set value, the output fluid pressure (rear wheel cylinder pressure) is controlled. Consequently, the braking forces are ideally distributed between the front and rear wheels.

FRONT BRAKE

he front disc brake uses a 13 -inch disc brake on all models. A solid disc brake has been adopted on G200 -- models, whereas a ventilated type disc brake has been adopted on G201 models and ABS-equipped vehicles.
The front disc brake has employed a caliper floating type. The calipers come in two kinds: One is for the solid disc. The other is for the ventilated disc.
For easier removal and installation of the calipers, a caliper mounting bracket has been added.
The disc pad has employed a non-asbestos pad. Furthermore, for easier service, a sound detecting type wear indicator has been installed.

REAR BRAKE

The rear brakes have adopted drum brakes for G200 models; disc brakes for G201 models and ABSequipped vehicles.

DISC ROTOR (ABS-equipped vehicle)

On ABS-equipped vehicles, a sensor rotor has been pressfitted for wheel speed detection.

ABS

On some models mounted with Type HC-E engine with the European specifications, the 4 -sensor and 4-channel type ABS manufactured by NIPPONDENSO is available as optional equipment.
This ABS system features small size, lightweight, a less number of actuator components and a less number of accessory parts.
(For details, refer to the ABS service manual.)

PARKING BRAKE MECHANISM

The parking brake employs a center lever method rear-wheel control type, as has been hitherto employed The lever ratio of the parking brake lever has been reviewed this time so as to reduce the operating load orthe lever and improve the brake effectiveness.
On disc-brake vehicles, the automatic adjusting mechanism (one-shot mechanism) has been employed that keeps the reserve travel (a gap between the piston and the push rod) of the parking brake lever at a constant value.

GSMD0110-99999

One-shot mechanism

(1) Construction

The one-shot mechanism consists of a push rod (adjusting bolt), a sleeve nut built-in the piston assembly, a bearing, a washer, a wave washer and a snap ring. This mechanism is operated when the service brake pedal is depressed.

(2) Operation

When the service brake pedal is depressed, the piston moves forward by a distance corresponding to the pad wear by the hydraulic pressure of the master cylinder.
At this time, the sleeve nut and adjusting nut section will not move, for the sleeve nut and adjusting bolt (push rod) are connected by the screw section.
However, the sleeve nut, bearing, washers and wave washer move in the forward direction of the piston, contracting the wave washer, for they are incorporated inside the piston by the snap ring.
Because of a reaction force generated at the wave washer this time, the sleeve nut which is in a floated state from the piston by the bearing is turned by a distance of the gap between the piston and the sleeve nut (corresponding to the pad wear). Consequently, the gap between the piston and the sleeve nut (push rod) can be kept at a proper value.

NOTE:

- When replacing the pad, make sure to return the piston into the cylinder by turning the piston clockwise.
- After the pad has been replaced or the caliper has been disassembled, be sure to depress the service brake pedal two or three times and adjust the reserve travel of the parking brake lever.

arking brake

The parking brake comes in two kinds according to the difference in shape of the center console.

VEHICLE INTERIOR

With a view to creating a vehicle the users will desire to use for a long time with friendly feeling and affectioi the vehicle interior has been so designed that the vehicle may have an ideal physical space with streamer lines. A quality feeling that is one class higher has been provided through the realization of balanced seat positions, comfortable seats, well-balanced and comfortable arrangement of the interior components, instrument panels facing stightly toward the driver and slightly-larger sized switches that feature good conspicuousness.

INSTRUMENT PANEL

To provide an improved quality feeling, the instrument panel has been designed to consist of simple and streamed lines. For easier operation, frequently-used heat control switches and radio are arranged at relatively-high positions. Moreover, the center clusters have been arranged so that they face toward the driver's seat.
In addition, the distance between switches and the driver's seat has been shortened and the switches have been enlarged for easier operation.

CONSOLE BOX

On all models, the full-console box is optional equipment. This console box has been so designed that it provides a continuous-feeling from the center cluster section of the instrument panel.
On high-grade models of AT and MT vehicles, the center tray is standard equipment. No basic model is equipped with the center tray.

AIR CONDITIONER

It has been agreed on the world level that the use of this substance of CFC12 (R12), because of its properties to destroy the ozone layers, be abolished totally by the end of this century.
The air conditioner has adopted one compatible with alternate flon HFC 134a (R134a) that has an extremely small coefficient of ozone layer destruction. In addition, the air conditioning capacity has been increased. The R134a, which is expressed by a chemical formula of $\mathrm{CH}_{2} \mathrm{FCF}_{3}$, does not contain Cl group (chlorine group) which constitutes a principal cause of the ozone layer destruction. Therefore, the R134a is the most expected substance as an alternate flon which has an extremely low coefficient of ozone layer destruction and stable physical property.
Furthermore, R134a also meets the requirements that the coefficient of global warming effect must be low and that the characteristics are similar to those of hitherto-employed CFC12 (R12).
However, R134a can not be used in the air conditioners for hitherto-employed R12 use owing to the following haracteristics: Poor solubility with the compressor oil (mineral oil), a greater water solubility (easy-to-take-in water) and a greater degree of swelling against sealing materials and hose materials.
To realize an air conditioner compatible with R134a, the following modifications have been enforced: Change in each sealing material and sealing construction, change in the dying agent, increased capacities of the magnet clutch and condenser, etc., change in the pressure switch and expansion valve and development/employment of new lubricating oil.
Moreover, taking into consideration the fact that even R134a has not a zero coefficient of ozone layer destruction, the hitherto-employed melt bolt has been abolished and the pressure relief valve is provided at the compressor side. This relief valve is opened to a required degree, in the event that the high-pressure rises abnormally, so as to lower the pressure. In this way, the releasing of the refrigerant (R134a) to the atmosphere may be kept to a minimum level.
From the viewpoint of the service, as a precautionary measure to prevent wrong use of the former refrigerant (R12) onto the new air conditioner, the piping joint sections, charging valve and service tools have been altered. Moreover, an identification of R134-use has been made conspicuously on each unit.

WHEEL

The wheei basically comes in five kinds.
On the 13 -inch wheel, the thickness of the steel material has been changed so that the weight may be reduced.
The aluminum wheel comes in two kinds; 13 -inch and 14 -inch wheels. The 13 -inch aluminum wheet has employed 7 -spoke type which gives a stable and tensed appearance. The 14 -inch aluminum wheel is a 5 -spoke type featuring sporty image.
For compact design, the wheel offset of the temporary tire has been shortened.

WHEEL CAP

The following kinds of wheel caps have been provided.

DAIHATSU G200,6201

CHASSIS

MA-1

MAINTENANCE

MAINTENANCE SCHEDULE MA- 2
SECTION DESCRIPTION MA- 2
MAINTENANCE OPERATIONS MA- 5
BRAKE PEDAL MA- 5
BRAKE FLUID MA- 6
BRAKE HOSE \& TUBE MA- 7
PARKING.BRAKE LEVER MA- 8
PARKING BRAKE ROD \& CABLE MA- 9
FRONT BRAKE (Disc brake) MA-10
REAR DRUM BRAKE MA-14
REAR DISC BRAKE MA-18
BRAKE BOOSTER MA-24
BRAKE MASTER CYLINDER MA-33
PROPORTIONING VALVE MA-36
FUEL HOSE AND CHECK VALVE MA-37
CHASSIS GREASE \& OIL MA-40
DOOR \& HOOD MA-40
MUFFLER AND EXHAUST PIPE MA-40
SEAT BELTS MA-41
BATTERY MA-41
HORN, WIPER, WINDSHIELD WASHER \& DEFROSTER MA-42
LIGHTiNG SYSTEM MA-42
METER \& GAUGE MA-44
WIRE HARNESS MA-44
AUTOMATIC TRANSMISSION MA-45
CLUTCH MA-46
MANUAL TRANSMISSION MA-47
DRIVE SHAFT MA-48
TIRE MA-49
WHEEL MA-50
WHEEL BEARING MA-50
STEERING BALL JOINT DUST BOOT MA-51
GEAR BOX MA-51
KNUCKLE MA-51
POWER STEERING BELT MA-51
POWER STEERING FLUID MA-52
TIE ROD AND ARM MA-54
STEERING WHEEL MA-55
WHEEL ALIGNMENT MA-55
SUSPENSION \& LINKAGE MA-56
SHOCK ABSORBER MA-56
SUSPENSION ARM, CONTROL ARM \& DUST COVER MA-56

MAINTENANCE SCHEDULE SECTION DESCRIPTION

Maintenance operation:
NOTE 1. Check the odometer and the period the vehicle has been operated whichever comes first.
2. Continue periodic maintenance after $100,000 \mathrm{~km}$ (60,000 miles), following this schedule.

O ... Check or inspect															
Section	Inspection		$\times 1000 \mathrm{~km}$	1	10	20	30	40	50	60	70	80	90	100	$\begin{aligned} & \text { See. } \\ & \text { page } \end{aligned}$
			$\times 1000$ miles	0.6	6	12	18	24	30	36	42	48	54	60	
			Years	-	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	
Brake system	Brake booster	- Fun						\bigcirc				\bigcirc			MA-24
		- Rubber parts (7 inches), booster assembly (8 inches) and vacuum hose replacement		Every 4 years											MA-24
	Brake fluid	- Lev		\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	0	O	0	\bigcirc	\bigcirc	0	MA-E
		- Change		Every 1 years											MA-6
	Brake hose \& tube	- Leakage Loose clamps Damage		\bigcirc	\bigcirc	\bigcirc	0		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	MA-7
		- Hose change		Every 4 year											MA-7
	Brake drum / disk	- Wear Damage						\bigcirc				\bigcirc			MA-10
	Brake lining	- Drum-to-fining clearance Wear				\bigcirc	MA-14								
	Brake pad (disk brake)	- Wear Damage Disk-to-pad clearance				0		\bigcirc		0		\bigcirc		\bigcirc	MA-10
	Brake pedal	- Free play Reserve travel		\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	MA-5
		- Effe			0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	MA-6
	Master cylinder. wheel cylinder and disc caliper	- Fluid				\bigcirc		0		\bigcirc		0		\bigcirc	MA-18
		- Fun Dam We						\bigcirc				0			MA-10
		- Cup	al replacement	Every 2 years											MA-10
	Parking brake lever	- Work		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	MA-B
		- Effe				\bigcirc	MA-8								
	Parking brake rod \& cable	- Tig Rat Dan						\bigcirc				0			MA-9
	Proportioning valve	- Replacement		Every 4 years											MA-36

Section	Inspection		$\times 1000 \mathrm{~km}$	1	10	20	30	40	50	60	70	80	90	100	See page
			$\times 1000$ miles	0.6	6	12	18	24	30	36	42	48	54	60	
			Years	-	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	
Steering system	Ball joint dust boot	- Damage				\bigcirc		\bigcirc		\bigcirc		0		\bigcirc	MA-51
	Gear box	- Leakage		0				0				\bigcirc			MA-51
		- Tightness						\bigcirc				0			MA-51
	Knuckie	- Rattle of linkage						\bigcirc				\bigcirc			MA-51
	Power steering belt	- Damage Tightness			\bigcirc	\bigcirc	O	\bigcirc	0	\bigcirc	0	\bigcirc	O	\bigcirc	MA-51
	Power steering fluid	- Fluid hose change		Every 4 years											MA-52
		- Level Leakage		\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	MA-52						
	Rod and arm	- Damage Rattle Tightness				0		\bigcirc		\bigcirc		\bigcirc		\bigcirc	MA-5d
	Steering wheel	- Free play Operation Rattle Tightness				\bigcirc	MA-55								
	Wheel alignment	- Side slip test Turning angle						\bigcirc				0			MA-55
Suspension system	Attaching portion \& linkage	- Damage Rattle Tightness						\bigcirc				\bigcirc			MA-56
	Shock absorber	- Damage Function Oil leakage Rattle						\bigcirc				\bigcirc			MA-56
	Spring	- Damage						\bigcirc				0			MA-56
	Suspension arm. control arm \& dust cover	- Damage Rattle Tightness						\bigcirc				0			MA-5F
Engine	Fuel tine \& connection	- Fuel hose replacement		Every 4 years											MA-37
Exhaust emission control system	Check valve	- Function						\bigcirc				0			MA-37

MAINTENANCE OPERATIONS
 BRAKE PEDAL

GMA00004-99999

FREE PRAY

With the engine stopped, first reduce the vacuum in the booster by depressing the brake pedal more than five times. Then lightly and slowly depress the pedal by hand until you feel resistance and measure the free play.

Specified Value: $0.5-2.0 \mathrm{~mm}$

EFFECTIVENESS

1. Check that the brakes are functioning effectively, either by using the brake tester or by conducting road tests on a level road.
2. Ensure that the brakes are functioning normally without any side pull.

BRAKE FLUID

LEVEL

Check the brake fluid level and replenish the brake fluid to the "MAX" line of the reservoir tank, if required.
NOTE:

- If the brake fluid is spilled in advertently over the paintfinish surface of the vehicle, quickly wipe off the brake fluid.

CHANGE

1. Submerge one end of a hose in a container filled with the brake fluid. Connect the other end of the hose to the wheel cylinder bleeder plug of the vehicle. Loose the bleeder plug.
2. Release the brake fluid completely fromeach wheel cylinder.
3. Tighten the bleeder plug and fill the brake fluid to the "MAX" line of the tank.

NOTE:

- For the vehicle equipped with A.B.S., air bleeding takes more time than that without A.B.S..

BRAKE HOSE \& TUBE

LEAKAGE, LOOSE CLAMP AND DAMAGE

 Inspect the hose for following points.(1) Hoses and tubes for damage, cracks
(2) Hoses for deformation or swelling
(3) Tubes for corrosion or rust
(4) Tube clamps and related parts for tightness, rattle or damage
(5) Connection for fluid leakage
(6) Hoses for extreme bending, twisting or pulling

HOSE CHANGE

1. Release the brake fluid from the reservoir tank.
2. Separate the hose from the brake tube, using a brake pipe wrench.
3. Detach the clip.
4. Disconnect the hose from the shock absorber bracket.
5. Disconnect the hose from wheel cylinder (or disc brake caliper).
6. Install in the reverse order of disconnecting.

NOTE:

- When install the hose to the wheel cylinder, tighten the specified torque, new gasket interposed. (Front brake)

Tightening Torque: $27-34 \mathrm{~N} \cdot \mathrm{~m}$
($2.7-3.5 \mathrm{kgf}-\mathrm{m}, 19.5-25.3 \mathrm{ft}-\mathrm{lb}$)

- When install the brake hose to the brake ture, tighten the specified torque. (Rear brake)

Tightening Torque: $13-17(1.3-1.8 \mathrm{kgf}-\mathrm{m})$

7. Perform the operation of air bleeding for the brake piping line. (See brake fluid change.)

(1) Parking brake handle
(2) Adjusting nut
(3) Parking brake pull rod
(4) Switch

WORKING TRAVEL

1. Pull the lever with 200 N by hand.

Specified Value: 4-7 notches

NOTE:

- If not specified value, adjust the adjusting nut.

2. Check the brake warning lamp for proper operation.

EFFECTIVENESS

1. Check to see if the vehicle can be retained in a stationary state on a dry slope with grade of $1: 5$ when the parking brake is applied.
2. Check that the ratchet of parking brake lever is functioning properly. Also, check the tooth shape of the ratchet for any abnormality.

PARKING BRAKE ROD \& CABLE

(1) Parking brake pull rod
(2) Clamp
(3) Parking brake cable assembly
(4) Clamp
(5) Clip

TIGHTNESS, RATTLE OR DAMAGE

1. Inspect the clamp-related parts for tightness, rattle or damage.

Tightening Torque: $4-7 \mathrm{~N} \cdot \mathrm{~m}$
($0.4-0.7 \mathrm{kgf}-\mathrm{m}, 2.9-5.2 \mathrm{ft}-\mathrm{lb}$) for all bolts
2. Inspect the rod and cable for damage.

FRONT BRAKE (Disc brake)

Tightening torque
Unit: N•m (kgf-m, ft-lb)

* : Non-reusable parts

(1) Main cylinder slide pin
(2) Sub cylinder slide pin
(3) Disc brake W/indicator pad No. 1
(4) Anti-squal shim No. 1
(5) Disc brake pad No. 2
(6) Anti-squal shim No. 2
(7) Disc brake pad guide plate No. 1
(8) Disc brake pad guide plate No. 2
(9) Disc brake cylinder
(10) Disc brake cylinder mounting
(11) Pin boot
(12) Set ring
(13) Cylinder boot
(44) Disc brake piston
(15) Piston seal

INSPECTION

1. Jack up the vehicle with safety stands. Remove the wheel.
2. Inspect the pad for damage and uneven wear.
3. Inspect the disk caliper for damage and malfunction.

NOTE:

- Any defective parts must be replaced.

DISC BRAKE PAD WEAR

1. Inspect the brake pad thickness through the inspection hole provided in the caliper.

Specified Thickness: 10 mm
Minimum Limit : 1 mm

CUP AND DUST SEAL REPLACEMENT

1. Disconnect the flexible hose from the disc brake caliper.
2. Remove the disc brake cylinder by removing the two attaching bolts.
3. Detach the disc brake pad.

NOTE:

- Cut off the brake fluid leakage at the point of flexible hose end by means of suitable stopper.

4. Detach the cylinder boot set ring and cylinder boot, using a screwdriver.

5. With a wooden piece or a cloth placed at the end of the disc cylinder, as indicated in the illustration. Drive out the piston by applying compressed air.
CAUTION:

- Special caution must be exercised so that no brake fluid may be splashed. Also, be very careful not to allow your finger be pinched.

GMA00028-99999

7. Prepare the following new parts.

- Piston seal
- Cylinder boot
- Set ring
- Bush dust boot

NOTE:

- Also, replace any defective parts.
- Apply grease to those points indicated in the illustration. Specified Grease: Brake rubber grease.

9. Insert the piston into the caliper, making sure that the piston is not tilted during the installation.

10. Assemble the cylinder boot in the caliper.

NOTE:

- Make sure that the boot is fitted securely in the groove.

11. Assemble the cylinder boot set ring, making sure not to scratch the boot.

\therefore Install the disc brake pad guide plate on the knuckle.
Install the brake pad in the caliper, with anti-squeal shims. Install the disc brake pad to the disc brake cylinder mounting. Then, install the disc brake cylinder to the disc brake cylinder mounting.

Tightening Torque: $38-49 \mathrm{~N} \cdot \mathrm{~m}$
($3.8-5.0 \mathrm{kgi}-\mathrm{m}, 27.5-36.2 \mathrm{ft}-\mathrm{lb}$)
14. Install the flexible hose.

Tightening Torque: $27-34 \mathrm{~N} \cdot \mathrm{~m}$
(2.7-3.5 kgf-m, $19.5-25.3 \mathrm{ft}-\mathrm{lb})$
15. Perform air bleeding for the brake system.

FLUID LEAKAGE

1. Inspect the fluid leakage from the disk brake cylinder portion.
\therefore Inspect the fluid leakage from the brake hose connecting portion between the cylinder and hose.

REAR DRUM BRAKE
COMPONENTS

\square : Tightening torque

Unit : N.m (kgf-m, ft-lb)
\star : Non-reusable parts

(1) Rear hub grease cap
(2) Cotter pin
(3) Castle nut
(4) Brake drum subassembly
(5) Shoe hold down spring
(6) Shoe hold down pin
(7) Tension No. 4 spring
(B) Tension No. 3 spring
(9) Tension spring
(10) Brake shoe assembly
(11) Brake shoe assembly
(12) Brake wheel cylinder assembly
(13) Brake backing plate
(44) Parking brake shoe lever
subassembly
(16) Automatic adjust latch
(16) Automatic adjust lever
(11) Automatic adjust pin
(18) Torsion spring
(19) Wheel cylinder boot
(29) Wheel brake cylinder piston
(2) Compression spring
(2) Cylinder cup

NSPECTION

1. Jack up the vehicle with safety stands. Remove the wheel.
2. Remove the grease cap, cotter pin, lock nut and plate washer.
3. Remove the brake drum, using the SST.

SST: 09510-87301-000
4. Inspect the backing plate, brake drum and brake shoe for damage, uneven wear or scores.

BRAKE DRUM AND LINING WEAR

1. Inspect the brake drum diameter.

Specified Diameter: 180 mm
Allowable Limit : 181 mm
2. Inspect the brake lining thickness.

Specified Thickness: 4.0 mm
Allowable Limit : 1 mm

WHEEL CYLINDER REPLACEMENT

1. Remove the tension springs, using the SST.

SST: 09703-30010-000
2. Disconnect the brake tube from the wheel cylinder, using the brake pipe wrench.
3. Remove the attaching bolts of the wheel cylinder. Proceed to remove the wheel cylinder from the backing plate.
4. Replace the following parts.
(1) Wheel cylinder boot
(2) Wheel cylinder piston cups
(3) Compression spring

GMA $00044-99999$
5. Assemble the cup on the wheel cylinder piston. NOTE:

- Be sure to install the cup in the correct direction.
- Apply brake rubber grease to the piston cup.

6. Install the two pistons and compression spring to the wheel cylinder.
7. Assemble the two wheel cylinder boots.
8. Install the wheel cylinder to the backing plate.

Tightening Torque: $8.11 \mathrm{~N} \cdot \mathrm{~m}$
(0.8 - $1.2 \mathrm{kgf-m}, 5.8-8.7 \mathrm{ft}-\mathrm{lb}$)
9. Install the brake pipe to the wheel cylinder temporarily by hand. Then, tighten the nut of brake pipe, using the brake pipe wrench.

Tightening Torque: $13-17 \mathrm{~N} \cdot \mathrm{~m}$
(1.3-1.8 kgf-m, $9.6-13.3 \mathrm{ft}-\mathrm{Ib})$
10. Install the tension spring.

NOTE:

- Be careful no to damage the wheel cylinder boot during the installation.

11. Install the brake drum subassaembly, then tighten the lock nut.

Tightening Torque: 60-89 N.m
(6.1 - $9.1 \mathrm{kgf}-\mathrm{m}, 44.1-65.8 \mathrm{ft}-\mathrm{lb}$)
12. Install the new cotter pin and the grease cap.

13. Perform air bleeding for the brakes.
14. Depress the brake pedal. Ensure that the automatic adjusting mechanism emit operating sound. Continue this operation, until you no longer hear any operating sound.
15. Adjust the working travel of the parking brake lever.

DRUM TO LINING CLEARANCE

1. Depress the brake pedal and ensure that the automatic adjusting mechanism emits operating sound. Repeat this operation until you no longer hear the operating sound.
2. Ensure that the brake drum turns lightly.

FLUID LEAKAGE

inspect the fluid leakage from the brake system.

REAR DISC BRAKE

: Tightening torque

COMPONENTS
Unit : $\mathrm{N} \cdot \mathrm{m}$ (kgi-m, ft-lb)
\star : Non-reusable parts

(1) Disc brake caliper assembly
(2) Disc brake cylinder assembly
(3) Disc brake mounting
(4) Spacer No. 1
(5) Bush dust boot No. 1
(6) Spacer No. 2
(7) Bush dust boot No. 2
(8) Parking brake strut
(9) O-ring
(10) Disc brake piston adjuster
(11) Dust seal retainer
(12) Pad adjust ring
(13) Compression spring
(14) Spring retainer
(16) Hole snap ring
(16) Piston seal
(11) Disk brake piston assembly
(1B) Cylinder boot
(13) Set ring
(24) Needle roller bearing
(21) Oil seal
(2) Tension spring
(23) Parking brake crank subassembly
(24) Cable support bracket

-NSPECTION

1. Jack up the vehicle with safety stands. Remove the wheel.
2. Inspect the pad for damage and uneven wear.
3. Inspect the caliper for damage and malfunction.

NOTE:

- Any defective parts must be replaced.

DISC BRAKE PAD WEAR

1. Inspect the brake pad thickness through the inspection hole provided in the caliper.

Specified Thickness: 7 mm
Minimum Limit : 1 mm

CUP AND DUST SEAL REPLACEMENT

1. Loosen the parking brake adjusting nut.

2. Disconnect the brake tube from the caliper. NOTE:

- - Cut off the brake fluid leakage at the brake tube end by means of suitable stopper.

3. Disconnect the parking brake cable from the caliper.

4. Remove the rear disc brake caliper assembly by removing the adjusting bolts.

5. Detach the disc brake cylinder assembly from the disc brake mounting by removing the attaching bolt.

6. Detach the cylinder boot set ring and cylinder boot, using a screwdriver.

7. Remove the disc brake piston assembly, using the SST. SST: 09719-00020-000

8. Remove the piston seal.

9. Remove the hole snap ring.

10. Remove the following parts.
11. Spring retainer
12. Compression spring
13. Pad adjusting ring
14. Dust seal retainer
15. Disc brake adjusting piston
16. O-ring
17. Parking brake strut
18. Prepare the following new parts.

- Bush dust boots
- Cylinder boot
- O-ring
- Piston seal
- Setring

NOTE:

- Also, replace any defective parts.
- - Apply grease to those points indicated in the illustration. Specified Grease: Brake rubber grease

12. Apply brake rubber grease to the disc brake cylinder. Install the parking brake strut.
13. Install the disk brake adjusting piston with a new O-ring and the dust seal retainer.
NOTE:

- Be sure to align the protruding section of the dust seal retainer with the cut-out section of the brake disc cylinder when installing the disc brake adjusting piston.

14. Install the pad adjusting ring, compression ring and spring retainer in this order. Then, temporarily install the hole snap ring.

- NOTE:
- When installing the hole snap ring, make sure that it comes incontact with the spring retainer straight.

15. Install the hole snap ring to the brake disc cylinder, using the SST.

SST: 09506-87501-000
CAUTION:

- Be very careful not to scratch the brake disc cylinder during the illustration.

GMAOO066-99999

16. Ensure that the adjuster moves by moving the parking brake crank.

17. Install the piston seal.
18. Install the piston to the disc brake cylinder, using the SST.

SST: 09719-00020-000

19. Assemble the piston assembly so that it may come at the position indicated in the right figure.
20. Assemble the cylinder boot in the caliper.

NOTE:

- Make sure that the boot is fitted securely.

21. Assemble the cylinder boot set ring, making sure not to scratch the boot.

-1. Connect the parking brake cable to the rear caliper. Install the parking cable support bracket.
22. Connect the brake hose to the disc brake cylinder with new gasket interposed.

Tightening Torque: $27-34 \mathrm{~N} \cdot \mathrm{~m}$
($2.7-3.5 \mathrm{kgt}-\mathrm{m}, 19.5-25.3 \mathrm{ft}-\mathrm{lb}$)
26. Perform air bleeding for the brake system. (See change of brake fluid.)

DISC TO PAD CLEARANCE

1. Depress the brake pedal about $2 \sim 3$ times. (This operation makes it possible to adjust the clearance between the disc brake pad and disc.)
2. Adjust the working travel of the parking brake lever. (See parking brake.)
3. Check to see if the brake disc can be rotated smoothly.
. Ensure that no abnormal sound is emitted when the wheel is rotated.

FLUID LEAKAGE

1. Inspect the fluid leakage from the disk brake cylinder portion.
2. Inspect the fluid leakage from the brake hose connecting portion between the cylinder and hose.

(1) Master cylinder piston seal
(2) Booster body
(3) Spring retainer
(4) Booster spring
(5) Booster piston rod
(6) Reaction disc
(7) Air valve seal
(8) Set cover
(9) Valve body
(13) Booster plate
(11) Diaphragm
(13) Pooster with rod, valve subassembly
(13) Poppet valve
(14) Air valve spring retainer
(2) Booster body
(16) Control valve spring
(3) Spring retainer
(10) Valve spring
(4) Booster spring
(5) Booster piston rod
(11) Piston return spring retainer
(6) Reaction disc
(16) Control valve spring retainer
(7) Air valve seal
(193) Element A
(8) Set cover
(20) E-ring
(9) Valve body
(10) Booster plate
(11) Diaphragm
(21) Element B
(20) Adjustment nut
(27) Booster push rod seal retainer
(24) Valve ring
(23) Piston seal

NOTE:

- The replacement of the rubber parts inside the brake booster should be conducted for the 7 -inches booster only.
As for the 8 -inches booster, the brake booster assembly should be replaced.

INCTION CHECK

-. With the engine stopped, depress the brake pedal several times, applying the same force at each brake application. Ensure that the brake pedal height will not vary at each brake application. Then, start the engine while depressing the brake pedal. If the bark pedal moves in stightly, it indicates that the booster is functioning properly.

BRAKE BOOSTER REMOVAL

1. Disconnect the connector of the brake fluid level switch.
2. Drain the brake fluid.
3. Disconnect the brake pipes from the master cylinder.
4. Remove the master cylinder and gasket.
5. Disconnect the vacuum hose.

NOTE:

- If the brake fluid is spilled inadvertently over the paintfinish surface of the vehicle, quickly wipe off the brake fluid.

6. Remove the ignition coil. (For LHD vehicle)
7. Remove the air cleaner. (For LHD vehicle)

8. Removal the clutch cable support bracket. (For LHD vehicle)
(1) Remove the battery and the engine coolant reservoir tank.

- (2) Disconnect the clutch cable from the transmission side and the clutch pedal.

(3) Remove the clutch cable support bracket.

9. Remove the instrument finish lower panel.
10. Disconnect the connector for the multi-use lever switch and key switch.
11. Remove the steering column assembly from the reinforcement, by removing the two nuts and four bolts.
12. Remove the clip and the with-hole pin at the brake pedal. Separate the master cylinder push rod clevis and from the brake pedal.
13. Remove the brake booster assembly and gasket from the vehicle, by removing the four nuts.

REPLACEMENT OF RUBBER PARTS (Only 7 inches booster)

1. Remove the booster push rod clevis and lock nut.
2. Separate the booster housing from the booster body as follows:
(1) Put mate marks on the booster body and booster housing.
2) Secure the brake booster on the following SST.

SST: 09753-87701-000
NOTE:

- Be certain to evenly tighten the SST nuts at the right and left sides. Also, be very careful not to tighten the SST nuts excessively.
(3) Turn the SST screw clockwise so as to disengage the booster housing from the booster body.
(4) Remove the brake booster from the SST.

3. Disassemble the brake booster.

GMA00091-90999
4. Prepare following new parts.

- Master cylinder piston seal
- Spring retainer
- Reaction disc
- Diaphragm
- Poppet valve
- Element A
- Piston return spring retainer
- E-ring
- Element B
- Booster push rod seal retainer
- Piston seal

5. Apply silicon grease to those points indicated in the figure below.

6. Assemble the following parts in the booster valve subassembly with rod.
(1) Install the poppet valve in the air valve spring retainer. Install them in the booster valve subassembly with rod.
(2) Install the control valve spring, valve spring, control valve spring retainer, element and E ring.
7. Instali the booster valve subassembly with rod and the piston return spring retainer in the valve body.

8. Install the element, adjusting nut and nut in place.

9. Assemble the following parts in the booster plate.
(1) Install the diaphragm
(2) Install the valve body, air valve seal reaction disc and booster piston rod.

(3) Install the set cover as follows:

- Temporarily install the set cover on the booster plate.
- Assemble the set cover by pinching the joint section of the booster plate with the claw section of the set cover, using pliers.
- Slide the claw section of the set cover using a screwdriver, until it no longer moves.

10. Install the piston seal, valve ring and booster push rod seal retainer in the booster housing.

11. Assemble the booster body and booster housing as follows:
(1) Place the booster body, spring retainer and booster piston return spring in the following SST.
SST: 09753-87701-000
(2) Place the booster housing in the SST. NOTE:

- Be certain to evenly tighten the SST nuts at the right and left sides. Also, be very careful not to tighten the SST nuts excessively.
- Furthermore, care must be exercised to ensure that the diaphragm will not be pinched.
(3) Turn the SST screw counterclockwise so that the mating marks may be lined up.
If the force required for turning is great, apply a small amount of silicon grease to the portion where the booster body is making contact with the booster housing.
(4) Remove the brake booster from the SST.

13. Install the master cylinder piston seal in the brake booster.
14. Temporarily install the master cylinder push rod clevis and nut.

GMA00103-00000

BRAKE BOOSTER PUSH ROD CLEARANCE ADJUSTMENT

1. Set the SST in such a way that the SST rod makes a light contact with the piston of the master cylinder, as indicated in right figure.

SST: 09737-87001-000
NOTE:

- Be sure to carry out this adjustment with the gasket attached in position.

2. Set the SST as indicated in the illustration. Adjust the push rod so that the push rod clearance may become zero.

GMA00104-99999

GMMA00106-99999

BRAKE BOOSTER INSTALLATJON

1. Install the brake booster in the engine compartment with a new gasket interposed between booster and the vehicle body, using the four nuts.

Tightening Torque: $10-15 \mathrm{~N} \cdot \mathrm{~m}$ ($1.0-1.6 \mathrm{kgf}-\mathrm{m}, 7.2-11.6 \mathrm{ft}-\mathrm{lb})$
2. Install the clip and the with-hole pin at the brake pedal.
3. Install the steering coiumn assembly to the reinforcement.

Tightening Torque
Bolt: $15-21 \mathrm{~N} . \mathrm{m}$
($1.5-2.2 \mathrm{kgf}-\mathrm{m}, 10.8-15.9 \mathrm{ft}-\mathrm{lb}$)
Nut: $\quad 10-15 \mathrm{~N} \cdot \mathrm{~m}$
($1.0-1.6 \mathrm{kgf}-\mathrm{m}, 7.2-11.6 \mathrm{ft}-\mathrm{Ib})$
4. Connect the connector for the multi-use lever switch and key switch.
5. Install the instrument finish lower panel.
6. Install the clutch cable. (For LHD vehicie) Adjust the clutch pedal free play and reserve travel.
7. Install the air cleaner and the ignition coil. (For LHD vehicle)
8. Connect the new vacuum hose.
. install the master cylinder with a new gasket interposed.
Tightening Torque: $12.7 \mathrm{~N} \cdot \mathrm{~m}(1.3 \mathrm{kgf}-\mathrm{m}, 9.4 \mathrm{ft}-\mathrm{lb})$
10. Connect the brake pipes to the master cylinder.

Tightening Torque: $13-17 \mathrm{~N} \cdot \mathrm{~m}$
(1.3-1.8 kgf-m, $9.6-13.3 \mathrm{ft}-\mathrm{lb}$)
11. Connect the terminal of the brake fluid level switch.
12. Perform the air bleeding for the brake system.

3RAKE MASTER CYLINDER

COMPONENTS

GM400112.99999

[^1]
REMOVAL OF BRAKE MASTER CYLINDER

1. Disconnect the connector of the brake fluid level switch.
2. Drain the brake fluid.
3. Disconnect the brake pipes from the master cylinder.
4. Remove the master cylinder and gasket.

NOTE:

- If the brake fluid is spilled inadvertently over the paintfinish surface of the vehicle, quickly wipe off the brake fluid.

5. Remove the cylinder piston seal. (For the 7 inches booster)

Inner parts replacement

1. Remove the set bolt and gasket while the pistons are being pushed fully by means of a suitable bar.
NOTE:

- During the removal, be sure to push the piston slowly so as to prevent the brake fluid from splashing.

2. Using a snap ring pliers, detach the snap ring while the pistons are being pushed by means of a suitable bar.
3. Remove the piston No. 1 from the master cylinder.

NOTE:

- Remove the piston straight, being very careful not to scratch the cylinder bore.

4. Remove the piston No. 2 by lightly tappping the flange surface.
NOTE:

- Remove the piston straight, being very careful not to scratch the cylinder bore.

5. Prepare the following parts.

- Brake master cylinder piston seal
- Gasket
- Brake master cylinder piston assembly No. 1
- Brake master cylinder piston No. 2

NOTE:

- Apply rubber grease to those points indicated in the illustration.

,. With the pistons in their fully pushed in state, install a new snap ring.

7. While pushing the pistons fully with a screwdriver, assemble the set bolt with a new gasket.
8. Install the master cylinder piston seal. (For the 7 inches booster)
9. Check and adjust the brake booster push rod clearance.
10. Install the master cylinder to the brake booster with a new gasket.

11. Connect the brake pipes to the master cylinder.

Tightening Torque: $13-17 \mathrm{~N} \cdot \mathrm{~m}$
(1.3-1.8 kgf-m, $9.6-13.3 \mathrm{ft}-\mathrm{lb}$)
12. Connect the terminal of the brake fluid level switch.
13. Perform the air bleeding for the brake system.

Replacement

1. Disconnect the brake pipes from the proportioning valve.

NOTE:
2. Remove the bolt from the body.

installation

1. Install new proportioning valve with the bolt.

Tightening Torque: $13-15 \mathrm{~N} \cdot \mathrm{~m}$

$$
\text { (1.3-1.6 kgf-m, } 9.4-11.6 \mathrm{ft}-\mathrm{lb})
$$

2. Instail the brake pipes to the proportioning valve.

Tightening Torque: $13-17 \mathrm{~N} \cdot \mathrm{~m}$
($1.3-1.8 \mathrm{kgf}-\mathrm{m}, 9.6-13.3 \mathrm{ft}-\mathrm{lb}$)
3. Perform the air bleeding for the brake system.

- *UEL HOSE AND CHECK VALVE

: Tightening torque

COMPONENTS

Ünit : $\mathrm{N} \cdot \mathrm{m}$ ($\left.\mathrm{kgf}-\mathrm{m}, \mathrm{tt}-\mathrm{lb}, \mathrm{in}-\mathrm{ib}{ }^{*}\right)$
\star : Non-reusable parts

(1) Fuel cut off valve assembly
(2) Fuel tank sub inlet hose
(3) Fuel tank inlet pipe subassembly
(4) Breather hose
(5) Gasket
(6) Drain plug
(7) Fuel return hose
3) Fuel hose (For fuel filler)
.j) Fuel hose (For charcoal canister)
(10) Check valve
(11) Fuel hose (For check valve)

FUEL TANK REMOVAL

1. Jack up the vehicle and support it with safety stand.
2. Drain the fuel from the tank by removing the drain plug. After the fuel has been drained, instail the drain plug with a new gasket.

Tightening Torque: $3-10 \mathrm{~N} \cdot \mathrm{~m}$

$$
\text { (0.3-1.0 kgf-m, } 2.2-7.2 \mathrm{ft}-\mathrm{lb})
$$

3. Disconnect the negative terminal from the battery.

GMA00128-00000
4. Disconnect the fuel sender gauge and fuel pump connector under the rear seat cushion.

5. Remove the fuel tank inlet pipe and the breather hose.
6. Remove the check valve.
(For carburetor engine without canister)
WARNING:

- Never allow any fire to be brought near the working site.

7. Remove the fuel hose for fuel filter.
(For carburetor engine)
8. Disconnect the fuel hose for fuel filter.
(For E.F.I. engine)
9. Remove the fuel return hose.
10. Remove the fuel hose for canister.

- FUNCTION CHECK OF CHECK VALVE

1. Remove the fuel cut off valve, by removing the fuel tank breather pipe subassembly.

2. Ensure that the air continuity is present, as indicated in the itlustration.

Tightening Torque:
$1.2-1.5 \mathrm{~N} \cdot \mathrm{~m}(0.15-0.25 \mathrm{kgf}-\mathrm{m}, 10.8-18.1 \mathrm{in}-\mathrm{lb})$

3. Install the fuel cut off valve, a new gasket and fuel tank breather tube subassembly.

FUEL TANK INSTALLATION

Reverse the removal procedure to install the fuel tank assembly.

CHASSIS GREASE \& OIL

CONDOTION

Visually check that the grease and oil condition is adequate on the following chassis various parts.

- Steering related parts
- Knuckle, king pin related parts
- Suspension related parts
- Door related parts
- Hood lock related parts

DOOR \& HOOD

LOCK OPERATION

1. Check that the door lock operates properly.
2. Check that the key lock and inner lock (including child safety) operate properly.
3. Check the doors for opening/closing, alignment and tightness.

DAMAGE \& TIGHTNESS

1. Check each hinge provided on the side doors and back door for looseness, moving by hand.
2. Check the hinge of the engine hood for looseness, moving by hands. Also, visually check the hinges for damage.

MUFFLER AND EXHAUST PIPE

DAMAGE \& TIGHTNESS

1. Check that the attaching section of the exhaust pipe and muffler as well as their connecting section for looseness, using a spanner or moving them by hand.
2. Visually check the exhaust pipes and mufflers for damage and leak of exhaust gas. Also ensure that there is no possibility of interference with any other parts.

WARNING:

- Never perform this check when the exhaust system is hot.
 Be careful not to burn yourself.

FUNCTION OF MUFFLER

Ensure that the muffier functions properly by changing the engine revolution speed.

;EAT BELTS

OPERATION

Visually check the seat belts for damage. Also, check that the tongue plate can be buckled properly.

TIGHTNESS

Check the seat belt attaching bolts for tightness.
Tightening Torque: $29-53 \mathrm{~N} \cdot \mathrm{~m}$
(2.9-5.4 kgf-m, $21.0-39.0 \mathrm{ft}-\mathrm{lb})$

BATTERY

CONNECTION OF TERMINAL SECTION

Check the terminal connections for cracks, corrosion or looseness. Check the hold-down clamps for looseness.

SPECIFIC GRAVITY (Except for Delco Freedom battery)

Check that the gravity should be more than $1.25\left(20^{\circ} \mathrm{C}\right)$

ELECTROLYTE LEVEL (Except for Delco Freedom battery)

Check the electrolyte level, if it is between the upper and lower limits.

NOTE:

For Delco Freedom battery

1. It is impossible to add the electrolyte, for it is permanently sealed.
2. It is possible to check the battery condition on the Hydrometer provided in the battery.

- Green dot is visible:

The battery is adequately charged.

- Dark (The green dot is invisible): The battery must be charged.
- Clear or light yellow:

Replace the battery.

HORN, WIPER, WINDSHIELD WASHER \& DEFROSTER

FUNCTION

Horn

1. Ensure that the horn functions properiy when any position of the horn button are pushed while turning the steering wheel.
2. Check horn volume and tone.

Rear wiper
GMA00149.99999

LIGHTING SYSTEM

FUNCTION

Light control switch

1. Ensure that each lamp goes on when the lever is operated.
2. Check lightness of the headlamps and the headlamp aiming.

Dimmer switch and passing light

1. Check the dimmer switch and passing light for operation.
2. Ensure that the indicator lamp glows when the headlamps are upper beam.

Turn signal switch

1. Ensure that the following lamps at the side where the switch is operated flash.
The front, rear, side turn signal lamps and the indicator lamp.
2. Ensure that the self cancel mechanism operates properly.

Hazard warning signal switch
Ensure that the turn signal lamps and the signal indicator lamps flash when the switch is operated.

Room lamp

1. Ensure that the room lamp always glows when the switch is at the "ON" position.

- 2. Move the switch to the "DOOR" position, then ensure that the room lamp glows only when the side door is opened.

Stop lamp
When the brake pedal is depressed, ensure that the stop lamp goes on. Also check that the stop lamp goes out when the brake pedal is released.

Back-up lamp
When the shift lever is shifted into the reverse position with the engine switch turned to the "ON" position, ensure that the back-up lamp goes on.

GMA00+52-99999

METER \& GAUGE

FUNCTION

Speedometer

1. Check that the pointer complies smoothly in accordance with the vehicle speed.
2. Check that the pointer does not fluctuate remarkably.

Tachometer
Check that the pointer complies smoothly in accordance with the engine revolution speed.

Water temperature gauge

Check that the pointer is at the starting point when the engine is cold and it is moved in accordance with warm-ing-up the engine.

Fuel gauge
Ensure that the pointer always indicates the fuel amount even when the engine switch is turned to the "OFF" position.

Warning light

Ensure that the warning lights glow with the engine switch turned to the "ON" position. And go out when the engine has been started and the parking brake lever is released.

WIRE HARNESS

Check the wire harness and clamps for damage.

AUTOMATIC TRANSMISSION

FLUID LEVEL

1. Park the vehicle on a level road and apply the parking brake.
2. With the engine idling, move the shift lever from P range to L range smoothly, and return to P range.
3. Pull out the dipstick and wipe it clean. Then Insert the dipstick and take it again. Check to see if the fluid level is in the limits.

NOTE:

- Perform the check when the fluid temperature is 70 $80^{\circ} \mathrm{C}$, which is normal operating temperature.

FLUID LEAKAGE

1. If the oil level is lower than that limit, check for fluid leakage.

- 2. Check to see if the leakage exists from the oil pan gasket or the drain plug.

FLUID CHANGE

1. Drain the transmission fluid by removing the drain plug.
2. Install the drain plug and new gasket.

Tightening Torque: 24-54 N.m
(2.4-5.6 kgf-m, 17.4 - $40.5 \mathrm{ft}-\mathrm{lb}$)

NOTE:

- Case where drain and fill the automatic transmission fluid. ... 3.2 litter
- Case where no fluid remains at all in the transmission nor in the torque converter.
... 5.7 litter

AATTLE OF OPERATION MECHANISM

1. Check the shift control cable for rattle or damage.
2. Ensure that the shift lever can be moved to each range with a proper detent feeling.

CHANGE OF OIL COOLER HOSE

1. Remove the engine under cover.
2. Disconnect the radiator outlet and inlet hose of the radiator and a automatic transmission.
3. Replace the oil cooler hoses.
4. If necessary, add the transmission fluid.

CAUTION:

- Be sure to completely wipe off the oil remaining at the outside of the inlet/outiet pipe. Then, connect a new hose.

GMA00164-00000

GMA00162-00000

CLUTCH

FREE PLAY

1. Lightly depress the clutch pedal by hand, until you feel resistance. Then, measure the free travel.
Specified Clutch Pedal Free Travel: $15-30 \mathrm{~mm}$
2. If the free travel does not conform to the specification, turn the adjusting ring of the clutch cable so as to conform to the specification.

RESERVE TRAVEL

1. Start the engine.
2. When the clutch is completely disengaged, ensure that the clearance between the clutch pedal and the dash panel conforms to the specification.
Specified Reserve Travel: 25 mm or more

GMA00167.99999

OPERATION

1. While the engine is running at idle speed, depress the ciutch pedal. Ensure that no abnormal noise is emitted and the gear shift can be made smoothly into the first gear or the reverse position.
2. Move off the vehicle while releasing the clutch pedal gradually. Ensure that the vehicle exhibits no slippage and that the clutch engagement is smooth.

ANUAL TRANSMISSION

OIL. LEVEL

1. Park the vehicle on a level road and apply the parking brake.
2. Turn the ignition switch OFF.
3. Remove the filler plug and check to see if the transmission oil level is in the limits.
4. Reinstall the filler plug with new gasket after checking. Tightening Torque: $30-49 \mathrm{~N} \cdot \mathrm{~m}$ ($3.0-5.0 \mathrm{kgf-m}, 21.7-36.2 \mathrm{ft}-\mathrm{lb}$)

OIL LEAKAGE

Inspect the transmission for oil leakage.

OIL CHANGE

1. Remove the drain plug and filler plug.

Drain the transmission oil.
2. Reinstall the drain plug with new gasket.

Tightening Torque: $30-49 \mathrm{~N} \cdot \mathrm{~m}(3.0-5.0 \mathrm{kgf}-\mathrm{m})$
3. Replenish the transmission oil, until it begins to overflow from the filler hole.
Manual Transmission Oil
Grade: API GL-3
Viscosity: SAE 75W-85 or 75W-90

Capacity: 2.25 liters

- 4. Reinstall the filler plug with new gasket.

Tightening Torque: $30-49 \mathrm{~N} \cdot \mathrm{~m}$
(3.0-5.0 kgf-m, 21.7-36.2 ft-lb)

RATTLE OF OPERATION MECHANISM

1. Move the shift lever to the neutral position as well as to each gear position.
2. Check that the shift lever has a proper play and the gear engagement takes place smoothly when shifted. Also, check that shift lever moves smoothly.

DRIVE SHAFT

JOINT DUST BOOT

1. Inspect that the dust boot is free from damage or cracks.
2. Inspect that the dust boot band is secured in position.

JOINT SECTIONS

1. Move the drive shaft by hand in an up-and-down direction as well as in a right-and-left direction.
2. Inspect that the joint section exhibits no excessive rattle.

SPLINE SECTION

1. Check the spline section for excessive play by turning the drive shaft by hand.

IRE

CLACKS AND DAMAGE

Inspect the tread section and side wall section for cracks and damage.

ROTATION

1. Rotate the tires in the order shown in the illustration.

Note 1 Vehicle with 4 steel wheels and one steel spare wheel or 4 aluminum wheels and one aluminum spare wheel.
Note 2 Vehicle with compact spare wheel or 4 aluminum wheels and one steel spare wheel.
Note 3 Vehicle with 175/60 R14 tires. (Original factory-installed tires)

- Tire Rotation Interval: every $10,000 \mathrm{~km}$ (6000 miles)

GMA00182-99999

See Note 1 See Note 2 See Note 3
2. Adjust the tire air pressure after rotation.

WHEEL

WHEEL DISC

Rim and wheel disc
Inspection of damage
Inspect that the rim and wheel disc exhibit no corrosion, deformation, cracks nor runout.

Reference

Runout Limit: Not to exceed 3 mm (Measured at outer peripheral section of wheel)

〕TEERING BALL JOINT DUST BOOT

DAMAGE

Inspect the dust boot of tie rod end ball joint for crack or damage.

TIGHTNESS

Inspect the drive belt for tension or deflection.
Specified Value:

Condition	Tension N	Belt deflection mm [when pushed with a force of $98 \mathrm{~N}(10 \mathrm{~kg})]$
When a new belt is installed:	$250-400$	$8-10$
When belt is reused:	$150-250$	$10-14$

NOTE:

- If a new belt is operated in its installed condition for more than 5 minutes, this belt should be regarded as a used part.

3. Stop the engine. Repair the hose as indicated in the illustrations.

NOTE:

- When installing the flare nuts of tubes to the steering gear, be sure to install the O-rings positively.
- Be very careful not to install the hoses in the twisted or forcibly bent state.
- Be sure disconnect the return hose at the reservoir tank.

4. Fill the reservoir tank with fluid.

Power Steering Fluid: DEXRON II
5. Start the engine and run it idly. When the fluid starts to flow out from the return hose side, immediately stop the engine.
6. Repeat the steps 4. and 5. above, until air no longer injects from the return side.
7. Connect the return hose to the reservoir tank.
8. Run the engine at a speed below the fast idle speed.

Turn the steering wheel quickly up to the lock position in either the right or left direction. Hold this locked state for about two to three seconds. Next, turn the steering wheel up to the oppositite lock position. Hold this lock state for about two to three seconds.
Repeat this operation two to three times.
NOTE:

- Check the fluid level during the bleeding operation, and added the fluid as required.

LEAKAGE

Inspect the power steering device for fluid leakage.

TIE ROD AND ARM

DAMAGE

Inspect the tie rod end, lock nuts and arm for damage.

TIGHTNESS

Inspect the nuts of the tie rod for looseness.
Tightening Torque: 26-38 N.m
($2.7-3.9 \mathrm{kgf}-\mathrm{m}, 19.5-28.2 \mathrm{ft}-\mathrm{lb}$)

RATTLE

Inspect the tie rod end, lock nuts and arm for rattle.

STEERING WHEEL

FREE PLAY

1. Set the vehicle in a straight-ahead condition.
2. Inspect the steering wheel play by turning it lightly with your fingers.
Specified Value: 10 mm Max.

OPERATION

Take road test. Ensure that the steering wheel exhibits no excessive shimmy motion.

RATTLE

- Hold the steering wheel by your hands. Ensure that the steering wheel exhibits no excessive looseness or play by moving it in an up-\&-down direction, a right-\&-left direction as well as in a fore-\&-aft direction.

TIGHTNESS

Inspect the attaching sections for tightness or damage.
Tightening Torque
Steering Wheel / Steering Main Shaft:

$$
28-41 \mathrm{~N} \cdot \mathrm{~m}(2.8-4.2 \mathrm{kgf}-\mathrm{m}, 20.3-30.4 \mathrm{ft}-\mathrm{Ib})
$$

Steering Main Shaft / Universal Joint:

$$
25-34 \mathrm{~N} \cdot \mathrm{~m}(2.5-3.5 \mathrm{kgf}-\mathrm{m}, 18.1-25.3 \mathrm{ft}-\mathrm{lb})
$$

Universal Joint / Steering Pinion:

$$
25-34 \mathrm{~N} \cdot \mathrm{~m}(2.5-3.5 \mathrm{kgf}-\mathrm{m}, 18.1-25.3 \mathrm{ft}-\mathrm{lb})
$$

WHEEL ALIGNMENT

SIDE SLIP TEST

\therefore Check the sideslip, using a sideslip tester.
Specified Value: $0 \pm 3 \mathrm{~mm}$ per 1 m

TURNING ANGLE

1. Measure the wheel turning angle, using a turning radius gauge.
Specified Value: Inner side: $39^{\circ} 45^{\prime} \pm 2^{\circ}$
Outer side: $34^{\circ} 30^{\prime} \pm 2^{\circ}$
2. If the wheel turning angle differs between the right and left sides, correct the turning angle.

CORRECTION OF WHEEL TURNING ANGLE

(1) Loosen the lock nuts of the tie rod ends.
(2) Make the length (a) indicated in the illustration, equal between the right and left sides length.

NOTE:

- Make sure that the boot is not twisted during this correction.
- Make sure that the tie rods at the right and left sides are turned by the same amount.
Tightening Torque: $38-56 \mathrm{~N} \cdot \mathrm{~m}$

SUSPENSION \& LINKAGE

DAMAGE

Visually inspect each coil spring for breakage and cracks.

RATTLE

Check the arm connecting section for rattle by rocking it by hand.

TIGHTNESS

Inspect the attaching sections for tightness.

SHOCK ABSORBER

DAMAGE AND OIL LEAKAGE
Visually inspect each shock absorber for damage and oil leakage.

RATTLE

Check each shock absorber instaliation section for excessive play by rocking it by hand.
Check the installation section for looseness with a spanner.

FUNCTION

Rock the vehicle in up-\&-down direction. Ensure that the vehicle emits no abnormal noise.

SUSPENSION ARM, CONTROL ARM \& DUST COVER

DAMAGE
Visually inspect the suspension arms and strut rod for. damage.

DAIHATSU G200, G201

HC, HD-Engine

MAINTENANCE

MAINTENANCE REQUIREMENTS
 MA- 2
 MAINTENANCE SCHEDULE
 MA- 3

COLD ENGINE OPERATION
 MA- 5

1. Inspection of engine coolant
level

MA- 5
2. Inspection of radiator cap and radiator filling port MA- 5
3. Inspection of engine coolant leakage

MA- 6
4. Inspection of the battery MA- 7
5. Inspection of drive belt MA- 9
6. Inspection air filter element MA-11
7. Inspection of blow-by gas recirculation device MA-12
8. Inspection of heat preventive device MA-13
9. Inspection of the spark control system MA-13
10. Check bf exhaust emission control device tightness and damage MA-13
11. Inspection of the fuel line and connection MA-15
12. Replacement of fuel filter MA-16
13. Inspection of fuel evaporative emission control device MA-18
14. Inspection of the ignition timing advance device. (HC -C engine) MA-23
15. Inspection of throttle valve MA-23
16. Inspection of choke valve MA-24
17. Inspection of carburetor linkage MA-24
18. Inspection of exhaust emission control device tightness and damage MA-24
19. Replacement of timing belt MA-25
HOT ENGINE OPERATION MA-35

1. Inspection of engine oil MA-35
2. Change of engine oil and oil filter MA-36
3. Inspection of engine starting and abnormal noise. MA-38
4. Inspection of spark plug MA-38
5. Inspection of distributor cap and rotor MA-40
6. Inspection and adjustment of valve clearances MA-41
7. Inspection and adjustment of ignition timing MA-45
8. Inspection and adjustment of idle speed MA-50
9. Inspection and adjustment of throttle positioner or dashpot MA-52
10. Inspection and adjustment of $\mathrm{CO} / \mathrm{HC}$ concentrations [HC -C engine] MA-55
11. Checking of $\mathrm{CO} / \mathrm{HC}$ concentrations [$\mathrm{HC}-\mathrm{E}$ and $\mathrm{HD}-\mathrm{E}$ engines] MA-57
12. Change of coolant MA-58

MAINTENANCE REQUIREMENTS

The scheduled maintenance service is important to ensure trouble-free, safe and economical driving. Failure to perform the scheduled maintenance may cause an accident or serious damage.
If you conduct the periodical maintenance, Daihatsu car owners may reduce the chance of accidents or car problems. Furthermore, it becomes possible for you to find at an earlier stage maifunctions which may lead to serious damages. Consequently, potential vehicle damage can be prevented or the degree of the damage can be minimized.
Therefore, all of the persons who are concerned with servicing the Daihatsu vehicles should offer the periodical maintenance service to Daihatsu car owners in order that they may be protected from accidents or unexpected problems.
To prevent malfunctions in advance, however, conducting the periodical maintenance service only is insufficient. It is essential that owners themselves perform maintenance, such as the pre-starting check described in the owner's manual, so that the vehicle exhibits no abnormal change or phenomenon. Hence, please explain to owners about the necessity of maintenance performed by them.
However, malfunction may occur on those vehicles which are always checked by their owners. For instance, if a part instructed to be replaced periodically should be used beyond the replacement intervals and the liff of the part has expired, there are cases where malfunction occurs suddenly despite the fact that numaifunction has taken place until yesterday. To prevent such malfunction in advance, be sure to replace parts recommended to be replaced periodically at the specified replacement intervals.
This section describes those items of the scheduled maintenance service recommended by the Daihatsu and their intervals. Be sure to observe the check schedule.

MAINTENANCE SCHEDULE

NOTE:

1. Perform the periodic maintenance when the odometer reading or duration from last periodic maintenance whichever comes first, if not specified.
2. Continue to perform the periodic maintenance after $100,000 \mathrm{~km}(60,000$ miles) by same interval with before $100,000 \mathrm{~km}$.

○ ... Check or inspect -... Change or replace

							... Ch	eck	or in	pect		...	han	or	replac
Section	Items	What to check	$\times 1,000 \mathrm{~km}$	1	10	20	30	40	50	60	70	80	90	100	See page
			$\times 1,000$ miles	0.6	6	12	18	24	30	36	42	48	54	60	
			Years	-	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	
Exhaust emission control system	Brow-by gas recirculation device	- Connection - Damage						\bigcirc				\bigcirc			
	Fuel evaporative emission control device	Piping	- Damage					\bigcirc				\bigcirc			
		Charcoal canister	- Clogging - Damage					\bigcirc				\bigcirc			
		Check valve	- Function					\bigcirc				\bigcirc			Reler to the chassis section of the manual manual
	Emission control device	- Tightness - Damage				\bigcirc									
	Dash pot or throttle positioner	- Operation				\bigcirc									
	VTV for spark control (HC-C engine)	- Clogging				\bigcirc									
	Piping	- Damage - Attaching condition				\bigcirc									
	Heat preventive device	- Tightness - Damage				\bigcirc									
Engine electrical system	Battery	- Electrolyte level			\bigcirc										
		- Specific gravity - Connection of terminal section				\bigcirc									
	Ignition timing	Spark plug	- Condition			\bigcirc									
		Ignition system	- Timing			\bigcirc									
		Distributor cap and rotor	- Condition			\bigcirc									
		Ignition timing	Timing advance Device (HC -C engine)			\bigcirc									

NOTE:

- If the vehicle should be operated under severe driving conditions, vehicle operated occasionally or vehicle operated dusty area, more frequent maintenance are required.

COLD ENGINE OPERATION

1. Inspection of engine coolant level

Check to see if coolant level is between the LOW and FULL lines of the reserve tank.
If coolant level is near the LOW level or bellow the LOW level, add the coolant up to the full level.
WARNING:

- Never open the radiator cap when the engine is still hot. Failure to observe this caution will cause you to get scalded.

NOTE:

- If no coolant is present in the reserve tank or the coolant level is very low, check for water leakage, using a radiator cap tester.
- Here; the coolant refers to the coolant having an adequate freezing protection rating.

2. Inspection of radiator cap and radiator filling port

WARNING:

- Never open the radiator cap when the engine is still hot. Failure to observe this caution will cause you to get scalded.
(1) Ensure that the engine coolant temperature is nearly atmosphere temperature.
(2) Turn the radiator cap to opening direction (counterclockwise) for one step (until the first detention will be feels).

3) Lightly depress the radiator cap one to two times to release the inner pressure of radiator.
(4) Open the radiator cap by turn it to counterclockwise while depressing the radiator cap.
(5) Remove the radiator cap.
(6) Install the radiator cap to the radiator cap tester.
(7) Check the radiator cap by means of a radiator cap tester to see if the relief valve opens at a pressure of $58.84-102.97 \mathrm{kPa}\left(0.6-1.05 \mathrm{kgt} / \mathrm{cm}^{2}, 8.53-14.9 \mathrm{psi}\right)$. If the radiator cap fails to confirm to the specification, replace the radiator cap.
(8) Remove the radiator cap from the radiator cap tester.

GMA00005.99899

(9) Check the seal packing of the radiator cap for damage. Replace the radiator cap with a new one, if any damage is exists.

(10) Lift the valve at the vacuum side with your fingers.

Ensure that the valve is functioning properly.
Replace the radiator cap with a new one, if the valve fails to function.
(11) Check the radiator filling port
(1) Ensure that the upper part of the radiator filling port has no crack. distortion or dented.
(2) Ensure that the radiator cap locked section of the radiator filling port has no crack, distortion or dented.
Replace the radiator, if any crack, distortion or dent are existing.
(12) Install the radiator cap to the radiator securely.

3. Inspection of engine cootant leakage

WARNING:

- Never open the radiator cap or drain plug when the coolant is still hot. Failure to observe this caution will cause you to get scalded.
(1) Ensure that the engine coolant temperature is nearly atmosphere temperature.
(2) Turn the radiator cap to opening direction (counterclockwise) for one step (until the first detention will be feels).
(3) Lightly depress the radiator cap one to two times to release the inner pressure of the radiator.
(4) Open the radiator cap by turn it to counterclockwise while depressing the radiator cap.
(5) Remove the radiator cap.
(6) Fill the radiator with coolant, if necessary.
(7) Attach a radiator cap tester.
(8) Apply a pressure of $117 \mathrm{kPa}\left(1.2 \mathrm{kgf} / \mathrm{cm}^{2}, 17 \mathrm{psi}\right)$ to the cooling system by means of a radiator cap tester.
If the pressure drops, check the hoses, radiator, water pump and heater for evidence of leakage.
If no external leakage is found, check the heater core, cylinder block, cylinder head, oil cooler and throttle body for evidence of leakage.
Check the hoses for deterioration, cracks, bulge or damage.
Replace the damaged part (s) if necessary.
(9) Remove the radiator cap tester from the radiator.
(10) Secure the radiator cap to the radiator.

4. Inspection of the battery

WARNING:

- Never touch at the battery terminals immediately after the engine is stopped.
- Be certain to turn OFF the ignition key switch during the inspection.
(1) Check the battery terminal case for proper installing condition and cracks.
If battery case exhibits improper installing condition or cracks, replace or repair the battery, as required.
- (2) Check to see if the battery terminals extibit corrosion and loose connection.
If the battery terminal exhibit corrosion and loose condition, disconnect the battery cable terminal which connected to the battery terminals.
Remove the any rust, using a wire brush or a tine abrasive paper.
After the battery cable terminals have been connected, coat these terminal with a thin film of lithium grease.

CAUTION:

- After the battery terminals have been cleaned, make sure that no rust particle remains on the terminals.
- Do not shorten the terminals of the battery with tools of metal objects. If the battery terminals are shorted, it will cause the battery to overheat and can cause damage or explosion.

GMA00000-99999
(3) Check of specific gravity of battery electrolyte (Except Delco Freedom Battery)
Measure the specific gravity of the electrolyte of each cell, using a hydrometer. Ensure that the specific gravity is within the specified value.
Standard Specific Gravity: 1.25 or more
When futly charged at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

If the specific gravity is not within the specified value, check the electrolyte level and replenish distilled water. Then, charge the battery until the specific gravity reaches the specified value.
<Reference>

| Specific gravity
 at standard
 temperature |
| :--- |\(=\left[\begin{array}{l}Measured

specific

gravity\end{array}+0.0007 \times\left($$
\begin{array}{l}\begin{array}{l}\text { Electrolyte } \\
\text { temperature at } \\
\text { time of } \\
\text { measurement }\end{array} \\
\end{array}
$$\right]-20 $$
\begin{array}{l} \\
\hline\end{array}
$$\right)\)

CAUTION:

- Utmost care must be exercised as to the handling of electrolyte. Be careful not to allow the electrolyte to touch to your skin, clothes or any parts of the vehicle.
(4) Inspection of battery electrolyte leveł
(Except Delco Freedom Battery)
Ensure that the battery electrolyte level is in the upper limit level.
If the battery electrolyte level of any cell is not at the upper limit level, replenish distilled water to the upper limit level.
WARNING:
- Tighten the battery vent caps securely after adding distilled water. Otherwise the battery electrolyte may be splashed out and damage your vehicle or even cause serious bodily injury.
- Battery contains sulfuric acid which is poisonous and corrosive.
Therefore, be careful not to splash battery fluid on yourself or clothes and wash the part immediately if it happen. Furthermore, wear protective safety glasses to protect the eyes.
- If you have swallowed battery fluid, drink as much water or milk as possible and immediately see a doctor.
- Keep tire away from the battery. It could cause battery explosion.
- Keep children away from the battery.

CAUTION:

- Wast splashed battery fluid away from paint finish immediately.

NOTE:

- Never add city tap water or sulfuric acid, etc. instead of distilled water.
- If the electrolyte level of each battery cell differs greatly, it is advisable to inspect to see if any electrolyte leakage is present.

GMA00016-00000
(5) Check battery specific gravity and electrolyte level.
(For Delco Freedom Battery)
Check battery specific gravity and electrolyte level by the color of the hydrometer.
Green Dot is Visible:
The battery is adequately charged.
Dark (The Green Dot is Invisible.):
The battery must be charged.
Clear of Light Yellow:
Replace the battery.

NOTE:

- On the Delco Freedom Battery, it is impossible to add the electrolyte, for it is permanently sealed.
- If the battery is required the charging, be sure to consult with the agent of Delco Freedom Battery for correct charging procedure.

Inspection of drive belt

(1) Visual inspection of the drive belt

Visually check the belt for separation of the adhesive rubber above and below the core, core separation from the belt side, severed core, separation of the rib from the adhesive rubber, cracks or separation of the ribs. torn or ribs or cracks in the inner ridges of the ribs. Replace the drive belt, if necessary.

(2) Inspection of the drive belt tension Measure the amount of the drive belt deflection when the midpoint of the drive belt between the alternator and the water pump pulley is pushed with a force of 98 N ($10 \mathrm{kgf}, 22 \mathrm{lb}$).
Specified Belt Deflection
New Belt: $4-5 \mathrm{~mm}$ (0.16-0.19 inch) [with a force of $10 \mathrm{~kg}(22 \mathrm{lb})$ applied at the point shown in the figure.]
Used Belt: $5-6 \mathrm{~mm}(0.21-0.23$ inch) [with a force of $10 \mathrm{~kg}(22 \mathrm{lb})$ applied at the point shown in the figure.]

If necessary, adjust the drive belt tension.
NOTE:

- "New belt" refers to a belt which has been used on a running engine for less than five minutes.
- "Used belt" refers to a belt which has been used on a running engine for more than five minutes or more.
- After replacing the drive belt, check that it fits properly in the ribbed grooves, especially in the places difficult to see.
- After installing a new belt, run the engine for about five minutes and then recheck the tension.
(3) Adjustment of drive belt tension
(1) Ensure that the ignition switch turned OFF.
(2) Slacken the atternator attaching bolts.

NOTE:

- Slacken the attaching bolts only for alternator moves.
(3) Install the following SST to the alternator and adjusting bar as shown in the right figure.
SST: 09286-87701-000
(4) Adjust the drive belt tension to the specified value by adjusting nut of the SST.
NOTE:
- As for the specification refer to the step (2).
(5) Tighten the alternator attaching bolts to the specified torque.
Tightening Torque: $34.3-53.9 \mathrm{~N} \cdot \mathrm{~m}$
(3.5-5.5 kgf-m, $25.3-39.8 \mathrm{ft}-\mathrm{tb})$
(6) Remove the SST from alternator and adjusting bar.

- Inspection air filter element

(1) Removal of air filter element (HC -C engine)
(1) Unlock the four clips and remove the wing nut.
(2) Gradually lift up the air filter upper case.

NOTE:

- Be very careful not to allow the vacuum hoses of the vacuum motor and ITC valve to be disconnected.
(3) Remove the air filter element.

(HC-E and HD-E engine)
(1) Remove the tube from air filter case.
(2) Disconnect the hook under the air duct at resonator attached section by pulling up.
(3) Unlock the four clips.
(4) Gradually open the air filter case cover.

NOTE:

- Do not open the air filter case cover more than that necessary to remove the air filter element.
(5) Remove the air filter element.
(2) Replacement of air filter element

Replace the air filter element when the replacement time arrives.
(3) Inspection of air filter element

Visually inspect the air filter element for being excessively dirty, damage or oily.
Replace the air filter element if necessary.
(4) Cleaning of air filter element

Clean the air fifter element with compressed air.
First, blow compressed air from the back side of the element thoroughly. Then, blow off the upper side of the element.
CAUTION:

- The air pressure to be used for this cleaning operation should not exceed $392.3 \mathrm{kPa}\left(4.0 \mathrm{kgt} / \mathrm{cm}^{2}, 56.9 \mathrm{psi}\right)$.
- Protect your eyes with safety goggles during the cleaning operation.

Replace the air filter element, if necessary.

(5) installation of the air filter element
($\mathrm{HC}-\mathrm{C}$ engine)
(1) Install the air filter element with align the protrusions sections of air filter lower case and air filter element.
(2) Place the air filter upper case.

NOTE:

- Ensure that the vacuum hose of the vacuum motor and ITC valve connected properly.
(3) Align protrusions of the lower cover and upper cover.
(4) Latch the four clips and tighten the wing nut.
($\mathrm{HC}-\mathrm{E}$ and $\mathrm{HD}-\mathrm{E}$ engine)
(1) Install the air filter element.

NOTE:

- Ensure that the direction of the air filter element in such direction wider protrusion side come to the air filter cover side.
(2) Close the air filter case cover.
(3) Latch the four clips.
(4) Connect the hook under the air duct at resonator attached section by pushing it doun.
(5) Connect the disconnected tube to the air filter case cover.

7. Inspection of blow-by gas recirculation device (HC-C engine)
Visually inspect the hoses for improper connections, cracks, leak or damage.
Replace or repair any part which exhibit defects.

($\mathrm{HC}-\mathrm{E}$ and $\mathrm{HD}-\mathrm{E}$ engine)
(1) Visually inspect the hoses for improper connections. cracks, leak or damage.
NOTE:

- Replace or repair any part which exhibit defects.
(2) Disconnect the blow-by gas hose from the surge tank side.
(3) Ensure that the no air continuity exists when blow your breath from the disconnected hose.
If air continuity is exist replace the check valve.

(4) Connect the Mity Vac to the disconnected hose.
(5) Ensure that the air continuity is exists when air suck in by the Mity Vac.
If no air continuity is exists, replace the check valve.
(6) Install the check valve to the cylinder head.
(7) Disconnect the Mity Vac from the blow by gas hose.
(8) Connect the blow-by gas hose to the surge tank side.

8. Inspection of heat preventive device
($\mathrm{HC}-\mathrm{C}$ engine)
(1) Check the heat insulator for damage.
(2) Check for adequate clearance between the exhaust manifold and heat insulator.
(3) Ensure that the attaching boits are tightened properly.

- (HC-E, HD-E engine)
(1) Check the heat insulator for damage.
(2) Check for adequate clearance between the three-way catalyst and heat insulator.
(3) Ensure that the attaching bolls are tightened properly.

9. Inspection of the spark control system
($\mathrm{HC}-\mathrm{C}$ with manual transmission engine)
(1) Disconnect the VTV hoses from VTV.
(2) Ensure that the air passes through with out restriction. when blow your breath into the VTV carburetor side (side B).
If significant restriction exist, replace the VTV.
(3) Ensure that the there is restriction in the VTV, when blow your breath into the VTV distributor side (side A).
If no restriction exist, replace the VTV.
(4) Remove the VTV hoses from carburetor and distributor.
(5) Ensure that the there is no restriction in the hose, when blow your breath into the each hoses.
If there is restriction, replace the hoses.
(6) Connect the VTV to the original position.

NOTE:

- Do not connect the VTV for opposite direction.

10. Check of exhaust emission control device tightness and damage

(1) Ensure that the no looseness are existing on attaching bolts.
If looseness is existing retighten the attaching bolts of the catalytic converter.
(1) HC-E engine with Australian specifications.
(2) HG-E engine except for Australian specifications and $H D-E$ engine.

GMA0CO228-94999

Gbir000299.99999

NOTE:

- Be sure to confirm that the no exhaust gas leakage is present at the connecting sections of catalytic converter, after retighten the attaching bolts.
- If gas leakage is present, replace the gasket with new one.
(Refer to the EM section or BO section of service manual.)
(2) Ensure that the no looseness is existing on the oxygen sensor attaching condition.
If looseness is existing retighten the oxygen sensor.
Tightening Torque: $29.4-39.2 \mathrm{~N} \cdot \mathrm{~m}$

$$
(3.0-4.0 \mathrm{kgl}-\mathrm{m}, 21.7-28.9 \mathrm{ft}-\mathrm{lb})
$$

NOTE:

- Be sure to contirm that the no gas leakage is present at the oxygen sensor attaching section.

(3) Ensure that the no crack or no any other damage is present on the oxygen sensor cord section.
If any damage is present replace the oxygen sensor with new one.
(4) Ensure that the connector of the oxygen sensor connected securely and clamped to connector clamp properly.
If not, securely connect and clamp the connectors.

11. Inspection of the fuel line and connection
($\mathrm{HC}-\mathrm{C}$ engine)
(1) Visually inspect the fuet line for damage, leakage and crack.
If damage, leakage or crack is existing, repair or replace the part as necessary.
(2) Ensure that the no looseness are existing on the connected sections of the fuef line.
(HC-E, HD-E engine)
(1) Visually inspect the fuel line for damage or crack. If damage or crack is existing, repair or replace the part as necessary.
(2) Ensure that the no looseness are existing on the connected sections of the fuel line.
(3) Turn OFF the ignition switch.
(4) Open the diagnosis connector cover.

NOTE:

- Be sure to prevent the entering of dust or water etc. into the diagnosis connector.
- Entering of dust, water or contamination of terminals in the diagnosis connector may cause serious malfunction, due to lowering the insulation of each terminals.
(5) Connect the Fp terminal with GND terminal in the diagnosis connector with the following SST.

SST: 09991-87705-000
NOTE:

- Care must be exercised to ensure that no connection made on terminal except for those specified.
- Even slight contact of the other terminal caused serious malfunction.
(6) Turn ON the ignition switch.
(7) Ensure that the no fuel leakage is existing on the fuel line.
If fuel leakage is present, repair or replace the part as necessary.
(8) Turn OFF the ignition switch.

(9) Remove the SST from the diagnosis connector. NOTE:
- Care must be exercised to ensure that no connection made on terminal except for those specified.
- Even slight contact of the other terminal caused serious malfunction.
(10) Close the diagnosis connector terminal cover.

NOTE:

- Be sure to prevent the entering of dust or water etc. into the diagnosis connector.
- Entering of dust, water or contamination of terminals in the diagnosis connector caused serious malfunction, due to lowering the insulation of each terminals.

12. Replacement of fuel filter

WARNING:

- Do not work near the open frame.

Failure to observe this caution will cause fire.
(HC-C engine)
(1) Ensure that the ignition switch turned OFF.
(2) Open the fuel filler cap.
(3) Remove the attaching bolt of fuet filter.
(4) Detach the hose clips from fuel filter side.

(5) Place the suitable container or cloth under the fuel filter.
(6) Disconnect the fuel hoses from fuel filter.
(7) Remove the clips from the fuel hoses.
(8) Insert the new clips to fuel hoses.
(9) Install the new fuel filter to the fuel hoses.
(10) Attach the new clips to the correct position.
(11) Install the fuel filter by attaching bolt.
(12) Secure the fuet filler cap.
(13) Remove the placed container or cloth.
(HC-E and HD-E engine)
(1) Ensure that the ignition switch turned OFF.
(2) Open the fuel filler cap.
(3) Place the suitable container or cloth to under the fuel filter.
(4) Slowly slacken the union bolt of upper side of the fuel filter.
While preventing the fuel from splashing.
NOTE:

- Be sure to hold the fuel filter side by spanner or the like to prevent from the fuel filter turning.
- Be sure to prevent the fuel from splashing to body or rubber part etc., because quite large amount of fuel will flow out.
(5) Disconnect the flare nut under the fuel fitter. NOTE:
- Hold the fuel filter side by spanner or the like to prevent from the turning.
- Prevent the fuel from splashing to body or rubber part etc., because quite large amount of fuel will flow out.
(6) Remove the fuel filter by removing the two attaching bolts.
(7) Install the new fuel filter with two attaching bolts.

Tightening Torque: $5.9-8.8 \mathrm{~N} \cdot \mathrm{~m}$

$$
(0.6-0.9 \mathrm{kgf}-\mathrm{m}, 4.3-6.5 \mathrm{ft}-\mathrm{lb})
$$

(8) Apply the engine oil to the threaded portion of the flare nut.
(9) Fully tighten the flare nut to the fuel filter by hand.
(10) Tighten the flare nut to specified torque.

Tightening Torque: $34.3-43.1 \mathrm{~N} \cdot \mathrm{~m}$
$(3.5-4.4 \mathrm{kgf}-\mathrm{m}, 25.3 \cdot 31.8 \mathrm{ft}-\mathrm{lb})$

NOTE:

- Prevent the fuel filter from turning by spanner or the like.
(11) Connect the fuel hose to the fuel filter by union bolt with new gaskets interposed.
- WARNING:
- Do not reuse the gaskets. Failure to observe this caution may cause fire by fuel leakage.

(12) Futly tighten the union bolt to the fuel filter by hand.
(13) Tighten the union bolt to specified torque.

Tightening Torque: $34.3 \cdot 44.1 \mathrm{~N} \cdot \mathrm{~m}$
($3.5-4.5 \mathrm{kgf}-\mathrm{m}, 25.3-32.5 \mathrm{tt}-\mathrm{Ib}$)

NOTE:

- Prevent the fuel filter from turning by spanner or the like.
(14) Close the fuel filler cap.
(15) Remove the placed container or the cloth.
(16) Repeate the ignition switch turn ON/OFF for four to five time with interval of three seconds.

13. Inspection of fuel evaporative emission control device
(HC-C engine with GCC specifications)
(1) Visual inspection of fuel vapor line and connections.

Check the line and connections for loose connections, kinks or damage.
(2) Visual inspection of fuel tank.

Check the fuel tank for deformation, cracks or fuel leakage.
Replace the fuel tank, if necessary.

NOTE:

- Ensure that the no restriction existing in the hose to the charcoal canister and no malfunction on the fuel filler cap.
(3) Inspection of the fuel filler cap Check the fuel filler cap and gasket for damage or deformation.
Also check the safety valve in the fuel filler cap is operating properly. Replace the cap; if necessary.
NOTE:
- If fuel tank deformed by negative pressure, be sure to replace the fuel filler cap with new one.

WARNING:

- Do not inhale the air during the checking. Inhalation of air, you may inhale the gas remain in the fuel filler cap.

(4) Inspection of the charcoal canister
(1) Detach the hose band from charcoal canister.
(2) Disconnect the rubber hoses and remove the charcoal canister.
NOTE:
- Prior to disconnection of the rubber hose, put a tag on each of the rubber hoses so that they may be reconnected correctly to the original position.

Gimado0:06-99999
(3) Visual inspection of charcoal canister

Visually inspect the charcoal canister case for cracks or damage.
If any damage is found, replace the charcoal canister with new one.
(4) Ensure that no air leakage is present when applying compressed air of $29.4 \mathrm{kPa}\left(10.3 \mathrm{kgf}-\mathrm{cm}^{2}\right.$) into thefuel tank side (B) or BVSV side pipe (B) while plugging the purge side (A) and atmosphere side (C) pipes.
If air leakage is present, replace the charcoal canister with new one.
(5) Ensure that the no air continuity is exist when blowing your breath into purge side (A) pipe of the charcoal canister.
If air continuity is exist, replace the charcoal canister with new one.
(6) Check of charcoal canister for restriction
a. Ensure that the air continuity is existing to the atmosphere side (C) pipes, when blow your breath into the fuel tank side (B) and BVSV side (B) While the purge side (A) pipe is plugged. If no air continuity is exist, replace the charcoal canister with new one.
b. Ensure that the air continuity is existing when applying a negative pressure to the purge side pipe (A) by Mity Vac. If no air continuity is exist, replace the charcoal canister with new one.
(7) Cleąning of charcoal canister

Clean the charcoal canister by blowing compressed air of $294.2 \mathrm{kPa}\left(3.0 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ into the fuel tank side pipe (B) or BVSV side pipe (B) while holding the purge side of canister pipe (A) closed.
NOTE:

- Do not attempt to wash the charcoal canister.
- No activated carbon should come out during the test.
(8) Install the charcoal canister to the vehicle, then reconnect the rubber hoses and attach the new hose bands.
(9) Install the charcoal canister to vehicle.
(10) Reconnect the rubber hoses and attach the new hose band.

(5) Inspection of Outer Vent Valve
(1) Disconnect the rubber hose at the BVSV side..
(2) Connect the suitable hose to the outer vent valve.
(3) Ensure that air continuity exists.

If no air continuity exists, check to see if any abnormality is present in the electric circuit of the outer vent valve. Then replace the outer vent valve, as required.
WARNING:

- Never inhale the air during the continuity inspection.

(4) Turn ON the ignition switch.
(5) Ensure that the no air continuity exists.

If air continuity exists, check to see if any abnormality is present in the electric circuit of the outer vent valve. Then replace the outer vent valve, as required.
WARNING:

- Never inhale the air during the continuity inspection.
(6) Turn OFF the ignition switch.
(7) Disconnect the connected hose from the outer vent valve.
(8) Connect the rubber hose from the BVSV. Attach the new hose band.
(6) Inspection of the BVSV
(1) Remove the rubber hose bands from BVSV side.
(2) Disconnect the rubber hoses from BVSV.
(3) Check the air continuity of the BVSV under the following ambient temperature condition.

Below $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$: No air continuity exists.
Above $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$: Air continuity exists.
Replace the BVSV, as required.
(4) Install the BVSV to the BVSV hoses.

(5) Place the new hose bands.
(HC - E and HD -E engine)
(1) Visual inspection of fuel vapor line and connections. Check the line and connections for loose connections, kinks or damage.
(2) Visual inspection of fuel tank.

Check the fuel tank for deformation, cracks or fuel. leakage.
Replace the fuel tank, if necessary.
NOTE:

- Ensure that the no restriction existing in the hose to the charcoal canister and no malfunction on the fuel filler cap.
(3) Inspection of the fuel filler cap

Check the fuel filler cap and gasket for damage or deformation.
Also check the air continuity with some resistance is existing on the fuel filler cap.
Replace the cap, if necessary.

NOTE:

- If fuel tank deformed by negative pressure, be sure to replace the fuel fiiler cap with new one after replacing the fuel tank.

(4) Inspection of the charcoal canister
(1) Detach the hose band from charcoal canister.
(2) Disconnect the rubber hoses from charcoal canister.
NOTE:
- Prior to disconnection of the rubber hose, put a tag on each of the rubber hoses so that they may be reconnected correctly to the original position.
(3) Remove the charcoal canister from vehicle by pull up the charcoal canister case.

GMA00051-99999

(4) Visually inspect the charcoal canister case for cracks or damage.
If any damage is found, replace the charcoal canister with new one.
(5) Check of charcoal canister for air leakage Ensure that no air leakage is present when applyingcompressed air of $29.4 \mathrm{kPa}\left(10.3 \mathrm{kgf}-\mathrm{cm}^{2}\right)$ into the fuel tank side pipe (B) with carburetor side (A) and atmosphere side (C) pipes plugged.
If air leakage is present, replace the charcoal canister with new one.
(6). Ensure that the no air continuity is exist when blowing your breath into purge side (A) pipe of the charcoal canister.
If air continuity is exist, replace the charcoal canister with new one.
(7) Check of charcoal canister for restriction.
a. Ensure that the air continuity is existing to the atmosphere side (C) pipe, when blow your breath into the fuel tank side pipe (B) while the purge side (A) pipe is plugged.
If no air continuity is exist, replace the charcoal canister with new one.
b. Ensure that the air continuity is existing when applying a negative pressure to the purge side pipe (A) by the Mity Vac.
If no air continuity is exist, replace the charcoal canister with new one.
(8) Cleaning of charcoal canister Clean the charcoal canister by blowing compressed air of 294.2 kPa ($3.0 \mathrm{~kg} / \mathrm{cm}^{2}$) into the fuel tank side pipe (B) while holding the purge side of canister pipes (A) closed.

NOTE:

- Do not attempt to wash the charcoal canister.
- No activated carbon should come out during the test. If activated carbon comes out replace the charcoal canister.
(9) Instail the charcoal canister to vehicle.
(10) Reconnect the rubber hoses and attach the new hose, band.

Inspection of the ignition timing advance device.

- (HC-C engine)
(1) Connection of the tachometer and timing light.
(See procedure of inspection and adjustment of ignition timing.)
(2) Warm up the engine thoroughly.
(3) Stop the engine.
(4) Disconnect the vacuum hose from the vacuum advancer.
(5) Plug the disconnected hoses with following SST.

SST: 09258-00030-000
(6) Start the engine.
(7) Ensure that the ignition timing will be advanced according with engine revolution when the engine is raced. If not repair the mechanical governor. (Refer to the IG section of the service manual.)
(8) Set the engine revolution at about 2000 rpm .
(9) Connect the Mity Vac to the main side vacuum advancer of the distributor.
(10) When the vacuum pressure is applied with the Mity Vac, ensure that the ignition timing will advanced according with a applied vacuum pressure by Mity Vac.
(11) Remove the Mity Vac from the vacuum advancer.
(12) Connect the main side vacuum hose to the main side vacuum advancer of the distributor.
(13) Ensure that the ignition timing will be advanced when the engine is raced.
(14) Connect the Mity Vac to the sub side vacuum advancer of the distributor.
(15) Connect the Mity Vac to the sub side vacuum advancer of the distributor.
(16) When the vacuum pressure by Mity Vac.
17) Remove the Mity Vac from the vacuum advancer.
-- (18) Connect the main side vacuum hose to the main side vacuurn advancer of the distributor.
(19) Ensure that the ignition timing will be advanced when the engine is raced. If not, check and repair the vacuum hose piping.
(20) Stop the engine.

15. Inspection of throttle valve

(1) Remove the air cleaner element.
(Refer to the inspection of the air cleaner element.)
(2) Ensure that the throttle valve operates smoothly with out rattle, when accelerator pedal is depressed gradually. If not, check and repair the accelerator pedal, linkage or throttle valve.
(3) Reinstall the air cleaner element. (Refer to the inspection of the air cleaner element.)

16. Inspection of choke valve

(1) Remove the air cleaner element.
(Refer to the inspection of the air cleaner element.)
(2) Pull the choke knob fully.
(3) Depress the accelerator pedal once.
(4) Ensure that the choke valve closed fully.
(5) Push back the choke knot fully.
(6) Ensure that the choke valve opened fully. If not, repair or replace the defective part.
(7) Reinstall the air cleaner element.
(Refer to the inspection of the air cleaner element.)
17. Inspection of carburetor linkage
(1) Ensure that the carburetor linkage connected properly and operate smoothly with out any rattled.

18. Inspection of exhaust emission control device

 tightness and damage(1) Ensure that the no looseness are existing on attaching bolts.
If looseness is existing retighten the attaching bolts of the catalytic converter.

Tightening Torque
HC-E Engine:
Exhaust manifold No. $1 \times$ Exhaust manifold No. 2
Exhaust manifold No. $2 \times$ Exhaust front pipe HD-E Engine:

NOTE:

- Be sure to confirm that the no exhaust gas leakage is present at the connecting sections of catalytic converter, after retighten the attaching bolts.
- If gas leakage is present, replace the gasket with new one.
(Refer to the EM section or BO section of service manual.)
(2) Ensure that the no looseness is existing on the oxygen sensor attaching condition.
If looseness is existing retighten the oxygen sensor.
Tightening Torque: $29.4-39.2 \mathrm{~N} \cdot \mathrm{~m}$

$$
(3.0-4.0 \mathrm{kgf}-\mathrm{m}, 21.7-28.9 \mathrm{ft}-\mathrm{lb})
$$

NOTE:

- Be sure to confirm that the no gas leakage is present at the oxygen sensor attaching section.

(3) Ensure that the no crack or no any other damage is present on the oxygen sensor cord section.
If any damage is present replace the oxygen sensor with new one.
(4) Ensure that the connector of the oxygen sensor connected securely and clamped to connector clamp properly.
If not, securely connect and clamp the connectors.

19. Replacement of timing belt

(1) Ensure that the ignition switch turned OFF.
(2) Disconnect the ground cable terminal from the negative terminal of the battery.
(3) Disconnect the bonding wire from the engine.
(4) Remove the power steering drive belt.
(Refer to the SR section of the service manual.)
(5) Removal of air conditioner drive belt
(1) Remove the engine right side under cover by removing the three attaching bolts and two grommet.
(2) Loosen the tensioner attaching bolt and release the adjusting bolt.
(3) Remove the air conditioner drive belt.
(6) Slightly jack up the engine with the supporting pad of a garage jack placed underneath the oilf pan.
NOTE:

- Place a suitable object, such as a wooden piece, between the oil pan and the supporting pad of the garage jack so as not to deform the oil pan.
- Care must be exercised to ensure that the interposed object is not interfering with the oil drain plug. Failure to observe, this note may incur a damaged drain plug.
(7) Remove the engine mounting front insulator with engine mounting right bracket by removing the five bolts and one nut with resistance stay (EFI engine only).
CAUTION:
- Ensure that the engine is supported by the garage jack and no load are applied to the attaching bolt of the engine mounting front insulator and engine mounting right bracket.
Failure to observe this caution will cause to damage the other part hitting by engine.

(8) Loosen the all attaching bolt of the water pump pulley, utilizing the tension of the V-ribbed belt.
NOTE:
- On the power steering-equipped vehicles, the drive pulley of the power steering vane pump is attached with the water pump pulley.
- On the automatic transmission vehicles, it is necessary to jack up the engine unit slightly to loosen the water pump pulley.
(9) Remove the alternator attaching bolts.
(10) Remove the alternator drive belt.
(11) Remove the water pump pulley and power steering vane pump drive pulley (Power steering equipped vehicles only).
(12) Remove the clamp toolts of the oil pressure switch wire.
(13) Remove the attaching bolts of the air conditioner compressor, and sling it to the body shell side with suitable wire.
(14) Remove the attaching bolts of the engine RH front mounting No. 2 with alternator bracket.
NOTE:
- Remove the alternator drive belt adjusting bar, in case vehicle equipped with the power steering.
(15) Remove the attaching bott of the crankshaft pulley. NOTE:
- Place the gear shift lever in the 4th gear position so as to prevent the rotation of the crankshaft in case of manual transmission equipped model.
- On the automatic transmission vehicle, prevent the crankshaft from being rotated by inserting a screwdriver or the like into the like into the ring gear at the rear end section of the cylinder block.
(16) Remove the crankshaft pulley.

GMA00068-99999

GMA00070.99999

(17) Remove the attaching bolts of the timing belt cover.
(18) Remove the timing belt upper cover.
(19) Remove the timing belt lower cover.
(20) Removal of the timing belt.

NOTE:

- Prior to removal of the timing belt, put an arrow mark indicating the normal rotating direction on the belt, using a chalk or the like. However, do not use the oily paint.

CAUTION:

- Do not try to pry the timing belt with a screwdriver or the like during the removal or installation.
- Do not allow the belt to come into contact with oil, water or dust.
- Do not bend the belt at a sharp angle or turn the belt inside out, as it is very vulnerable to bending.
- Do not utilize the tension of the timing belt when loosening the set bolt of the camshaft timing belt pulley.
- Do not turn the crankshaft and camshaft alone.
- Failure to observe this caution will cause break off the timing belt.
(1) Rotate the crankshaft until the "F" mark of the crankshaft timing belt pulley is aligned with the indicator of the cylinder head cover.
(2) Loosen the attacting bolt of the timing belt tensioner.
(3) Move the tensioner to the left as far as it will go and tighten the tensioner attaching boit temporarily.
(4) Remove the timing belt.
(21) Removal of the timing belt tensioner.
(1) Loosen the attaching bolt of the timing belt tensioner.
(2) Remove the tension spring.
(3) Remove the timing belt tensioner by removing the its attaching bolt.

GMA00073-99999

(22) Inspection of the timing belt.
(Refer to the timing belt section of the service manual.)
(23) Inspection of the timing belt tensioner
(1) Check the timing belt tensioner for smooth turning.
(2) Check the timing belt attaching surface for damage. If any malfunction or damage is present, replace the timing beft tensioner with new one.
(24) Inspection of timing belt tensioner spring
(1) Check the free length of the spring.

Free Length: HC engine 53.65 mm (2.11 inches)
HD engine 46.5 mm (1.83 inches)
(2) Check the tension of the spring at the specified instailation length.
Tension as Installed
HC Engine: $\quad 19.6 \pm 2.0 \mathrm{~N}$ at 57.25 mm
$(2.0 \pm 0.2 \mathrm{kgf}$ at 57.25 mm ,
$4.4 \pm 0.4 \mathrm{lb}$ at 2.3 inch)
HD Engine: $\quad 29.4 \pm 2.9 \mathrm{~N}$ at 50.9 mm $(3.0 \pm 0.3 \mathrm{kgt}$ at 50.9 mm , $6.6 \pm 0.7 \mathrm{lb}$ at 2.0 inch)

If the tension dose not conform to the specification, replace the tensioner spring.
(25) Visually inspect the timing belt pulleys for damages. If the any damage is present, replace the timing belt pulley.
(For detaif of removal and installation of timing belt pulleys, refer to the EM section of the service manual.)
NOTE:

- Do not allow the timing belt pulleys to come into contact with oil, water or dust.
(26) Inspection of timing belt pulley flange

Visually inspect the crankshaft timing belt pulley flange for bend, damage and wear.
If the any damage is present, replace the crankshaft timing belt pulley flange with new one.
(For details of removal and installation of timing belt pulley flange, refer to the EM section of the service manual.)
NOTE:

- Do not allow the timing belt pulley flange to come into contact with oil, water or dust.
(27) Inspection of water pump leakage

Visually inspect the water purnp for leakage.
Repair it if any water leakage is presented.
(28) Inspection of the oil leakage

Ensure the no water leakage is presented.
Repair it if any water leakage is presented.

(29) Installation of timing belt *

CAUTION:

- Do not try to pry the timing belt with a screwdriver or the like during the removal or installation.
- Do not allow the belt to come into contact with oil, water or dust.
- Do not bend the belt at a sharp angle or turn the belt inside out.
- Do not utilize the tension of the timing belt when tightening the set boits of the camshaft timing belt pulley and crankshaft.
- The adjustment of the belt tension should be made when the cylinder block and its ambient temperatures are in between $5-50^{\circ} \mathrm{C}\left(41-122^{\circ} \mathrm{F}\right)$.
- Perform the engine turning operation at the crankshaft side.
- Do not turn the crankshaft or camshaft alone.
- Failure to observe this caution will cause break off the timing belt.
- When the timing belt is reused, install the timing belt in such way that the direction of the arrow mark put during the removal may much with the engine rotation direction.
(1) Attach the tension spring to the timing belt tensioner. <Reference> Identification of Tension Spring

Engine	Rupber length mm (inch)
$H C$	$30(1.181)$
$H D$	$20(0.787)$

(2) Hang the tension spring to the tension spring hook on the pin.

(3) Assemble the timing belt tensioner in place and install the bolt.
CAUTION:

- Hang the spring hook securely on the pin groove.
- Ensure that the pin at the oil pump is fitted into the pin hoie of the timing belt tensioner.
(4) While pulling the timing belt tensioner fully toward the water pump side, temporarily tighten the attaching bolt of the timing belt tensioner.
(5) Aline the "F" mark of the camshaft timing belt pulley with the indicator on the cylinder head cover.
NOTE:
- It should be noted that the piston may interfere with the valves, if the camshaft is turned independently.
(6) Aline the driled mark of the crankshaft timing belt pulley with the indicator on the oll pump.
NOTE:
- It should be noted that the piston may interfere with the valves, if the crankshaft is turned independently.
(7) Assemble the timing beit in such a way that the two mating marks on the timing belt may be aligned with the corresponding drilled marks on the crankshaft timing belt pulley and camshaft timing beli pulley.
NOTE:
- When the timing belt is reused, install the timing belt in such way that there exist 34 teeth in case of HC engine, 35 teeth in case of HD engine of the belt between the drilled marks of crankshaft timing belt puliey and camshaft timing belt pulley.
- When the timing belt is reused, install the timing belt in such way that the direction of the arrow mark put during the removal may much with the engine rotation direction. <Reference> Identification of Timing Belt

Engine	Teeth NBR between timing mark
$H C$	34
$H D$	35

(B) Loosen the attaching bolt of the timing belt tensioner. Apply the tension to the timing belt.
(9) Temporarily tighten the attaching bolt.

NOTE:

- Ensure that the belt exhibits no slack at the tension side of the beli (the side opposite to the tensioner).

(10) Rotate the crankshaft 1.9 turns in the normal direction (to the clockwise as viewed from the timing belt side of the engine) so thiat the "F" mark of the camshaft timing belt pulley comes at a point three teeth in the camshaft timing belt pulley before the indicator of the cylinder head cover.
CAUTION:
- At this time, never turn the crankshaft reversely.
- Make sure that the belt is not tilted between the crankshaft timing belt pulley and the camshaft timing belt pulley.

If crankshaft be reversed or the timing belt should be tilted, turn the crankshaft two more turns.
(11) Make the tensioner free by loosening the attaching bolt of the timing belt tensioner.
(12) Turn the crank shaft further in the normal direction until the "F" mark of the camshaft timing belt pulley is aligned with the cylinder head cover.

CAUTION:

- Never turn the crankshaft reversely.
- Never turn the crankshaft beyond the point where the "F" mark of the camshaft timing belt pulley is aligned with the indicator.

If the crankshaft should be reversed or turned beyond that point, temporarily tighten the tensioner attaching bolt and repeat the operation from the step (ii) onward.
(13) Tighten the attaching bolt of the timing belt tensioner to the specified torque.
Tightening Torque: $29.4-44.1 \mathrm{~N} \cdot \mathrm{~m}$

$$
\text { (3.0 - } 4.5 \mathrm{kgf}-\mathrm{m},
$$

$$
21.7-32.5 \mathrm{ft}-\mathrm{lb})
$$

(14) Ensure that the drilled marks of the crankshaft timing belt pulley and camshaft timing belt pulley are aligned with the corresponding indicators.
If the drilled mark is not aligned with the indicator, repeat the operations from the step (10) onward.

GMA00087.99999

If the belt deflection dose not conform to the specification, repeat the operations from the step (10) onward.

(16) Checking of timing belt tension

When the midpoint of the belt at the tension side is pushed $5 \mathrm{~mm}(0.20$ inch), ensure that the pushing force is with in the specified value.
Specified Pushing Force: $7.9-15.6 \mathrm{~N}$
($0.8 \cdot 1.6 \mathrm{kgf}$,
$1.77 \cdot 3.52 \mathrm{lb})$
When belt deflected 5 mm (0.20 inch)
(30) Installation of timing belt cover <Reference>
Identification of Timing Belt Cover

Engine	Identification of timing belt cove
HC	01
HD	102

(1) Install the timing belt lower cover.

Tightening Torque: $2.0-3.9 \mathrm{~N} \cdot \mathrm{~m}$

$$
(0.2-0.4 \mathrm{kgi}-\mathrm{m}, 1.4-2.9 \mathrm{ft}-\mathrm{lb})
$$

NOTE:

- Care must be exercised as to the length of each bolt.
(2) Install the timing belt upper cover.

Tightening Torque: $2.0-3.9 \mathrm{~N} \cdot \mathrm{~m}$

$$
(0.2-0.4 \mathrm{kgf}-\mathrm{m}, 1.4-2.9 \mathrm{ft}-\mathrm{lb})
$$

NOTE:

- Care must be exercised as to the length of each bolt.
(31) Installation of crankshaft pulley <Reference>
Identification of Crank Shaft Pulley

Engine	Identification of timing belt cover
HC-C	Ignition timing mark $5^{\circ} \pm 30^{\prime}$ Air conditioner pulley diameler $111 \mathrm{~mm}(4.37 \mathrm{inch})$
HC-E	Ignition timing mark $0^{\circ} \pm 30^{\prime}$ Air conditioner puliey diameter $111 \mathrm{~mm}(4.37 \mathrm{inch})$
HD-E	lgnition timing mark $0^{\circ} \pm 30^{\circ}$ Air conditioner pultey diameter $119 \mathrm{~mm}(4.685$ inch $)$

(1) Install the crankshaft pulley with four attaching bolts.
(2) Tighten the crankshaft pulley bolts to the specified torque.
Tightening Torque: $19.6 \cdot 29.4 \mathrm{~N} \cdot \mathrm{~m}$

$$
(2.0-3.0 \mathrm{kgt}-\mathrm{m}, 14.5-21.6 \mathrm{ft}-\mathrm{lb})
$$

NOTE:

- On the manual transmission transmission vehicle, prevent the crankshaft from turning by placing the gear shift lever in the 4th gear position.
- On the automatic transmission vehicle, prevent the crankshaft from being rotated by inserting a screwdriver or the like into the ring gear section of the cylinder block.

-(32) Installation of engine RH front mounting No. 2 with alternator bracket.
NOTE:
- Install the alternator drive belt adjusting bar, in case vehicle equipped with the power steering.
Tightening Torque: $44.1-53.9 \mathrm{~N} \cdot \mathrm{~m}$
(4.5-5.5 kgf-m, $28.9-39.8 \mathrm{ft}-\mathrm{Ib}$)
(33) Install the air conditioner compressor with attaching bolts.
(34) Install the oil pressure switch wire clamps to the engine mounting with the attaching bolts.
(35) Install the water pump pulley to the water pump pulley temporarily tighten the attaching bolt by hand.
<Reference>
Identification of Water Pump Pulley

Engine	Identification color
HC	Nil
HD	Orange

NOTE:

- Install the power steering vane pump drive pulley with the water pump pulley, if vehicle equipped with the power steering.
(36) Install the alternator drive belt (V-rebbed belt).

NOTE:

- Make sure that the drive belt (V-rebbed belt) is fitted properly in the groove of each pulley.
(37) Adjustment of alternator drive belt tension. (Refer to the inspection of drive belt step 4.)
(38) Tighten the attaching bolts of the water pump pulley by utilizing the tension of V-ribbed belt.
Tightening Torque: $5.9-8.8 \mathrm{~N} \cdot \mathrm{~m}$

$$
(0.6-0.9 \mathrm{kgi}-\mathrm{m}, 4.3-6.5 \mathrm{ft}-\mathrm{lb})
$$

(39) Ensure that the drive belt deflection meets with the specified value when the midpoint between the water pump pulley and the alternator drive pulley is pushed with a force of $98.1 \mathrm{~N} \cdot \mathrm{~m}(10 \mathrm{kgf}, 22 \mathrm{lb})$.
(See the step 4)
If the deflection dose not confirm to the specification, perform the adjustment so that the specification may be satisfied.
(40) Install the engine mounting front insulator with the engine mounting right bracket by five attaching bolts and one nut.
Tightening Torque:
Nut: $\quad 14.7-22.6 \mathrm{~N} \cdot \mathrm{~m}$ ($1.5-2.3 \mathrm{kgf}-\mathrm{m}, 10.8-16.6 \mathrm{ft}-\mathrm{ib})$
Bolt: $\quad 39.2-39.8 \mathrm{~N} \cdot \mathrm{~m}$ (4.0-5.5 kgf-mi, 28.9-39.8 ft-lb)
(41) Remove the garage jack from under the oil pan.
(42) Installation and adjustment of air conditioner compressor drive belt.
(1) install the air conditioner compressor drive belt.
(2) Adjust the beit tension by idler pulley adjusting bolt.
(3) Tighten the idler pulley attaching nut.

Tightening Torque: $39.2 \mathrm{~N} \cdot \mathrm{~m}(4.0 \mathrm{kgf}-\mathrm{m}, 28.9 \mathrm{ft}-\mathrm{lb})$
(43) Install and adjust the power steering drive belt and its tension (See the SR section of the service manual.)
(44) Connect the bonding wire to the engine mounting bracket.
(45) Connect the engine ground cable terminal to the negative terminal of the battery.
(46) Start the engine and no abnormal noise emitted.

hot engine operation

1. Inspection of engine oil

(1) Oil quality check
(1) Park the vehicle on a level surface.
(2) Puil out the dipstick out and wipe off the engine oil.
(3) Reinsert the dipstick as far as it will go.
(4) Pull out the dipstick again and check the oil level if it is between " F " and "L" marks.
(5) Ensure that the engine oil level should be between the "L" and " F " level on the dipstick.
If engine oil level is less than the " L " level check the oil leakage.
If engine oil level is less than the " L " level, replenish the specified engine oil to the " F " level after the checking of the oil leakage.
NOTE:

- The amount of oil between the "L" level and the " F " level equals to one liter.
(6) Check the engine oil for deterioration, ingress of water, discoloring or dilution.
If oil quality is poor, change the engine oil.
(See procedure of change of engine oit and oil filter section.)
(7) Reinsert the dipstick as far as it will go.
(2) Oil level check
(1) Park the vehicle on a level surface.
(2) Pull out the dipstick out and wipe off the engine oil.
(3) Reinsert the dipstick as far as it witl go.
(4) Pull out the dipstick again.
(5) Ensure that the engine oil level should be between the "L" and "F" level on the dipstick. If engine oil level is less than the "L" level check the oil leakage.
If engine oil level is less than the "L" level, replenish the specified engine oil to the "F" level after the checking of the oil leakage.

NOTE:

- Use API grade SE or higher multigrade viscosity, fuelefficient oil. (See the procedure of change of engine oil and oil filter section.)
- The amount of oil between the " L " level and the " F " level equals to one liter.

(6) Warm up the engine to normal operating temperature.
(7) Stop the engine.
(8) After few minutes, slowly pull out the dipstick out and wipe off the engine oil.
(9) Reinsert the dipstick as far as it wifl go.
(10) Pull out the dipstick again and check the oif level if it is between "F" and "L" marks.
If the engine oil level is low, replenish the specified engine oil to the "F" level of the dipstick.
(See procedure under pour engine oil to the engine.)
(11) Reinsert the dipstick as far as it will go.
(3) Inspection of engine oil leakage
(1) Check the oil level.
(See the inspection of the oil level.)
(2) Start the engine.
(3) Ensure that the no oil leakage is present.

Repair or replace the defective part, if oil leakage is present.

2. Change of engine oil and oil filter

WARNING:

- Protect your eyes by wearing the safety grasses.
- Be very careful not to burn yourself with hot engine oil or hot engine components.
(1) Park the vehicle on a level surface.
(2) Check the oil level. (See the inspection of the oil level.)
(3) Start the engine.
(4) Warm up the engine to normal operating temperature.
(5) Place a suitable container under the oil drain plug.
(6) Remove the drain plug and gasket, and drain the engine oil into the placed container completely.
(7) Remove the oil filler cap.
(8) Remove the right side engine under cover by removing three bolts and one screw, if vehicle equipped air conditioner.
(9) Place a suitable container under the oil filter.
(10) Slacken the oil filter with an oil filter wrench.

CAUTION:

- Be careful, at this time oil may flow out.
(11) Remove the oil filter by hand.
(12) Wipe off the engine oil from the oil filter attaching part of the engine.
(13) Thinly apply engine oil to the O-ring of the new oil filter.
(14) Screw in the oil filter by hand, until the O-ring of the oil filter contacts the oil filter installing surface.

15) Tighten the oil filter three fourths to one complete turn, using the foilowing SST or by hand.
SST: 09228-87201-000

CAUTION:

- Do not overtighten the oil filter. Failure to observe this caution will cause oil leakage or damage of oil pump or oil filter.
(16) Tighten the drain plug to the specified torque with new gasket interposed.
Tightening Torque: $19.6-29.4 \mathrm{~N} \cdot \mathrm{~m}$
(2.0-3.0 kgf-m, $14.5-21.7 \mathrm{ft}-\mathrm{lb})$
(17) Pour engine oil to the engine.

NOTE:

- Use API grade SE or higher multigrade viscosity, fuelefficient oil.
- The amount of oil between the "L." level and the " F " level equals to one liter.

Unit: Liter

	HC-C		HC-E		HD-E	
	With oil cooler	Withoul oil cooler	With oil cooler	Without oil cooler	With oil cooler	Wilhout oif cooter
F level	3.3	3.3	3.3	3.3	3.3	3.3
L level	2.3	2.3	2.3	2.3	2.3	2.3
Oil capacity When oil filter replaced	3.6	3.5	3.6	3.5	3.6	3.5
Full capacity	3.9	3.8	3.9	3.8	3.9	3.8

NOTE:

- If vehicle equipped with the oil-cooler, the oil capacity is 79 cc grater than the amount specified above.
(18) Pull out the dipstick out and wipe off the engine oil.
(19) Reinsert the dipstick as far as it will go.
(20) Pull out the dipstick again.
(21) Ensure that the engine oil level should be between the "L" and "F" level on the dipstick.
If engine oil level is less than the "L" level, replenish the specified engine oil to the " F " level.
(22) Close the oil filler cap.

WARNING:

- Securely install the oil filler cap. Failure to observe this warning will cause a fire.
(23) Start the engine.

24) Warm up the engine to normal operating temperature.
(25) Stop the engine.

GMA0010t-99999

(26) After few minutes, slowly pull out the dipstick out and wipe off the engine oil.
(27) Reinsert the dipstick as far as it will go.
(28) Pull out the dipstick again and check the oil level if it is between "F" and "L" marks.
If the engine oil level is low, replenish the specified engine oil to the "F" level of the dipstick.
(29) Reinsert the dipstick as far as it will go.
(30) Install the right side engine under cover, if it is removed.

3. Inspection of engine starting and abnormal noise.

(1) Ensure that the engine can starts smoothly with out any abnormal noise.
(2) Ensure that the engine can not starts with shift lever placed other than the Neutral or Parking range if vehicles equipped with the automatic transmission.
4. Inspection of spark plug
(1) Inspection of electrode

When megger (insulation resistance meter) is used:
(1) Carefully disconnect the resistive cords from the spark plugs by holding their rubber boot section.
NOTE:

- Do not disconnect the resistive cords by holding the code section of the resistive codes.
(2) Measure the insulation resistance of the spark plug. Minimum Insulation Resistance: $15 \mathrm{M} \Omega$

WARNING:

- Since the spark plugs are hot, care must be exercised to avoid getting scalded.

If the measured insulation resistance is less than specified, proceed to the step (2).

When a megger is not available:
(1) Start the engine. Warm up the engine completely.
(2) Race the engine at 4000 rpm for five seconds.
(3) Remove the spark plug, using the following SST.

SST: 09268-87703-000

WARNING:

- Since the spark plugs are hot, care must be exercised to avoid getting scalded.
- Visually inspect the spark plug.

If the electrode is dry: Satisfactory
If the electrocle is wet: Proceed to the step (4)

GMAC0104-2

(2) Removal of the spark plug
(1) Carefuliy remove the resistive cords from the spark plugs by holding their rubber boot section.
NOTE:

- Do not disconnect the resistive cords by holding the code section of the resistive codes.
(2) Remove the spark plug, using the following SST.

SST: 09268-87703-000
(3) Visual inspection of spark plug Visually inspect the spark plug for electrode wear. thread or insulator damage.
Replace the spark plug if it exhibits damage.
Recommended Spark Plug

	CHAMPION	NIPPONDENSO	NGK
HC-C HC-E	RC9YC4	K2OPR-U11	BKR6E-11
HD-E	-		

NOTE:

- All four spark plugs should have the same heat range and be ones manufactured by the same manufacturer.
(4) Inspection of electrode gap

Measure the electrode gap, using the plug gap gauge.
Electrode Gap: $1.0-1.1 \mathrm{~mm}$

$$
(0.040-0.043 \mathrm{inch})
$$

If the electrode gap of a used spark plug is not within the specification, replace the spark plug with new one. If the electrode gap of a new spark plug is not within the specification, adjust the gap by bending the base of the ground electrode, being careful not to touch the tip.
(5) Cleaning the spark plug If the, electrode has traces of wet carbon, dry the electrode and clean it with a spark plug cleaner.

Air Pressure: Not to exceed 588.4 kPa ($6 \mathrm{kgf} / \mathrm{cm}^{2}, 85 \mathrm{psi}$)
Duration: Less than 20 seconds
NOTE:

- If there are trace of oil, remove it with gasoline before the spark plug is cleaned by the spark plug cleaner.
(6) Inspection of spark plug insulation resistance More Than: $20 \mathrm{M} \Omega$

If the insulation resistance is less than the specified value, replace the spark plug with the new one.

(7) Installation of spark plug Install the spark plugs. Tighten them to the specified torque, using the following SST.

SST: 09268-87703-000
Tightening Torque: $14.7-21.6 \mathrm{~N} \cdot \mathrm{~m}$ ($1.5-2.2 \mathrm{kgf}-\mathrm{m}$, $10.8-15.9 \mathrm{ft}-\mathrm{lb})$

NOTE:

- Since the insulator strength of a small spark plug is comparatively smaller than that of regular spark plugs, when tightening, be sure to use the tool exclusively used for this application. Also, when tightening, never use the wrench in a crooked way.
(8) Connect the resistive cords to the spark plug.

NOTE:

- Care must be exercised to ensure that the spark plug side connector of the resistive cord grommet part should be matched with recessed part of the cylinder head cover.
- Clamp the No. 3 resistive cord in such way that the protector end should be come to the plug side of the resistive cord clamp as indicated in the right figure.

5. Inspection of distributor cap and rotor
(1) Ensure that the ignition switch is turned OFF.
(2) Disconnect the resistive cords from the distributor cap. NOTE:

- Do not hold the wire section of the resistive cord during the disconnection, be sure to disconnect the resistive cord by holding the grommet section of the resistive cord.
(3) Remove the distributor cap by removing the attaching bolts of the distributor cap.
(4) Ensure that the distributor cap have no cracks or any other damage.
(5) Ensure that the center carbon has no noticeably wear. If the excessive wear is found replace the center carbon.
NOTE:
- Replacement should be performed with rotor and center carbon as a set.
(6) Ensure that the electrode has no excessive electrical corrosion
If excessive electrical corrosion is found remove it by the baking soda water. Do not remove it by screw driver or the like.

GMA00114.99999
(7) Remove the distributor rotor by pull it out.
(8) Ensure that the distributor rotor has no cracks or other damage.
If damage is found replace the rotor with new one.
NOTE:

- Replacement should be performed with rotor and center carbon as a set.
(9) Ensure that the electrode has no corrosion.

If corrosion is found remove the electrical corrosion by baking soda water.

NOTE:

- Do not remove the electrical corrosion by file or hard material made tools.
(10) Install the distributor rotor to the distributor securely.
(11) Replace the distributor cap gasket with new one.
(12) Install the distributor cap to the distributor.
(13) Install the distributor cap attaching bolts and tighten them evenly.
(14) Connect the resistive cords to the distributor cap by following the manner described on the GI section of the service manual.

6. Inspection and adjustment of valve clearances

The measurement and adjustment of valve clearance are carried out when each of the piston of the No. 1 and No. 4 cylinders is set to the top dead center at the end of compression stroke.
NOTE:

- The valve clearance adjustment is performed normally when the engine is in a hot condition.
"Hot engine condition" denotes a condition in which the cooling water temperature is $75-85^{\circ} \mathrm{C}\left(167-185^{\circ} \mathrm{F}\right)$ and the engine oil temperature is above $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$.
However, when the engine has been overhauled, it is necessary to adjust the valve clearances while the engine is cold and to readjust the valve clearance in a hot condition after warming up the engine.

(1) Removal of the cylinder head cover
(1) Detach the resistive cords from the clamps.

NOTE:

- On the left hand drive unit, disconnect the accelerator cable at the throttle body side. Proceed to remove the cable from the cable clamp.
(2) Detach the resistive cords at the cylinder head side. NOTE:
- Be sure to hold the rubber boot during the resistive cord disconnection. Never remove the resistive cord, holding the cord portion.
(3) Disconnect the blow-by gas hoses from the cylinder head cover.

NOTE:

- Do not disconnect the accelerator cable clamp. (only for right hand drive vehicle only)
(4) Detach the oxygen sensor harness from the clamp. (HC-E engine only)
(5) Disconnection of air cleaner case from the cylinder head.
($\mathrm{HC}-\mathrm{C}$ engine only)

1) Remove the attaching bolt of air cleaner to the cylinder head cover.
2) Remove the wing nuts.
3) , Disconnect the following hoses.

ITC vacuum hose to carburetor.
Vacuum hose to BVSV.
NOTE:

- This procedure may not required if air cleaner is not removed.

4) Gradually lift up the air cleaner case.

CAUTION:

- Be very careful not to disconnect the ITC valve and BVSV hoses, if those hoses are disconnected, be sure to reconnect the those hoses.

5) Disconnect the accelerator cable or choke cable from the clamp of the cylinder head cover. ($\mathrm{HC}-\mathrm{C}$ engine only)

(6) Loosen the nine bolts (10 mm) over tow or three stages in the sequence shown in the right figure.

NOTE:

- Be sure to loosen the bolts progressively and uniformly over two or three stages.
(7) Remove the attaching bolts.
(B) Remove the cylinder head cover.

NOTE:

- Be very careful not damage the grommets of the spark plug tubes.
(2) Inspection and adjustment of valve clearances

NOTE:

- Before the adjusting bolts are tightening with the lock nuts apply engine oil to the between lock nut and valve rocker arm.
(1) Turn the crank shaft until the recessed mark on the crankshaft pulley is aligned with the indicator mark on the timing belt cover.

GMA00121.99999

GMA00123-99999
NOTE:

- The "O" mark denotes those valves that can be adjusted under that setting.

Valve Clearances (Hot)

Intake: $0.25 \pm 0.05 \mathrm{~mm}$ (0.0098 ± 0.002 inch)
Exhaust: $0.33 \pm 0.05 \mathrm{~mm}(0.01 \pm 0.002$ inch $)$
(Reference)
Valve Clearances (Cold)
Intake: 0.18 mm (0.0071 inch)
Exhaust: 0.25 mm (0.098 inch)
Tightening Torque (Lock nut): $16.7-22.6 \mathrm{~N} \cdot \mathrm{~m}$
(1.7-2.3 kgf-m,
$12.3-16.6 \mathrm{ft}-1 \mathrm{tb})$

Piston position		1	2	3	4
When valve rocker arms of No. 1 cylinder are free: (Piston of No. 1 cylinder is at top dead center under compression stork)	Intake	\bigcirc	\bigcirc		
	Exhaust	\bigcirc		\bigcirc	
When valve rocker arms of No. 4 cylinder are free: (Piston of No. 4 cylinder is at top dead center under compression stork)	Intake			\bigcirc	\bigcirc
	Exhaust		\bigcirc		\bigcirc

(3) Turn the crankshaft 360 degrees.
(4) Proceed to check and adjust the remaining valve clearances.
(3) Installation of cylinder head cover
(1) Wipe off the oil from the gasket attaching surface of the cylinder head.
(2) Check the cylinder head cover gasket for evidence of damage.
Replace the gasket, as required.

NOTE:

- Install the cylinder head cover gasket in such a direction that the identification mark may come at the intake side.
(3) Check the rubber grommets of the spark plug tubes for evidence of damage.
Replace the rubber grommet, as required.
(For replacement of the rubber grommet refer to the $E M$ section of the service manual.)
(4) Install the cylinder head cover gasket on the cylinder head.

NOTE:

- Install the cylinder head cover gasket in such direction that the identification mark may come at the intake side.
(5) Apply the Three Bond 1104 to the four points on the cylinder head, as indicated in the figure.
(6) Install the cylinder head cover on the cylinder head. NOTE:
- Be very careful not to damage the rubber grommets for spark plug tubes during the cylinder head cover installation.
- Make sure that the rubber grommet is fitted over the spark plug tube.
(7) Tighten the cylinder head cover bolts over two or three stages in the sequence shown in the right figure, until they are tightened to the specified torque.

Tightening Torque: $2.9-4.9 \mathrm{~N} \cdot \mathrm{~m}$

> (0.3-0.5 kgf-m,
$2.2-3.6 \mathrm{ft}-\mathrm{lb})$

(8) Tighten the timing belt cover attaching bolts.

Tightening Torque: $2.0-3.9 \mathrm{~N} \cdot \mathrm{~m}$ ($0.4-0.4 \mathrm{kgf}-\mathrm{m}$, $1.4-2.9 \mathrm{ft}-\mathrm{lb})$
(9) Installation of air cleaner assembly (HC-C engine only)

1) Place the air cleaner on the engine.
2) Connect the vacuum hoses to the BVSV.
3) Tighten the attaching bolt and wing nuts.
(10). Connect the accelerator cable or choke cable to the cable clamp provided on the cylinder head.
(11) Install the oxygen sensor harness to the clamp. (Only for HC-E engine)
(12) Connect the PCV hoses to the cylinder head cover.
(13) Install the resistive cords to the cylinder head.

NOTE:

- Be sure that the resistive cord is connected securely to each spark plug.
- Care should be exercised not to damage the resistive cord with the spark plug tube.
(14) Install the resistive cords to clamp.
(See the Gl section of the service manual)
(13) Start the engine.
(16) Ensure that the engine exhibits no oil leakage.

NOTE:

- If the engine exhibits any troubles, repair them depending on the situation.

.. Inspection and adjustment of ignition timing

NOTE:

- The ignition timing inspection or adjustment is performed normally when the engine is in a Hot condition.
"Hot engine condition" denotes a condition in which the cooling water temperature is $75-85^{\circ} \mathrm{C}\left(167-185^{\circ} \mathrm{F}\right)$ and the engine oil temperature is above $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$.
[$\mathrm{HC}-\mathrm{C}$ engine]
(1) Start the engine.
(2) Warm up the engine.
($)$ Stop the engine.
(A) Connection of tachometer.
(1) Disconnect the connector of the distributor.
(2) Connect the following SST between distributor and vehicle side of distributor connector. (if your tachometer is clamp on type this operation is unnecessary.)
SST: 09991-87604-000

(3) Connect the tachometer to the engine.

CAUTION:

- Never allow the tachometer terminal to touch ground. It could result in damage of the ignition system.
- As some tachometers are not compatible with this ignition system, it is recommended to confirm the compatibility with your unit before its use.
(5) Connect a timing light to the resistive cord of the No. 1 cylinder (at the timing belt side.).
(6) Disconnect the vacuum hose at the sub-side of the vacuum advancer of distributor.
(7) Plug the disconnected vacuum hose, using the following SST.

SST: 09258-00030-000
(8) Start the engine.
(9) Ensure that the engine revolution speed is bellow 1000 rpm and stable.
If the engine revolution exceeds 1000 rpm or it is unstable, adjust the engine revolution speed to the idle speed. (See procedure of inspection and adjustment of idle speed.)
(10) Check to see if the ignition timing mark of the crankshaft pulley is aligned with the indicator of the timing belt cover, using the timing light.
Adjust the ignition timing by turning the distributor, if the ignition timing mark is not aligned with timing belt cover.

(11) Adjustment of ignition timing
(1) Loosen the distributor attaching bolts.
(2) Adjust the distributor installation angle by turning the distributor, until the ignition tirning mark of the crankshaft pulley is aligned with the indicator of the timing belt cover.

REFERENCE:

- If the distributor is turned clockwise, the timing will be advanced. Conversely, if the distributor is turned counterclockwise, the ignition timing will be retarded.
(3) Tighten the distributor attaching bolts to the specified torque, making sure that the ignition timing is not disturbed.

Tightening Torque: $14.7-21.6 \mathrm{~N} \cdot \mathrm{~m}$
($1.5-2.2 \mathrm{kgf}-\mathrm{m}$,
$10.8-15.9 \mathrm{ft}-\mathrm{lb})$
(12) Stop the engine.
(13) Remove the tachometer.
(14) Remove the SST from distributor connectors.
(15) Reconnect the distributor connector.
(16) Remove the SST from vacuum hose end.
(17) Connect the vacuum hose at the sub-side of the vacuum advancer of distributor.
(18) Adjust the idle speed. (See procedure of Inspection and adjustment of idle speed.)
[HC-E and HD-E engine]
(1) Start the engine.
(2) Warm up the engine.
(3) Stop the engine.
(4) Connection of tachometer.
(1) Disconnect the connector of the distributor.
(2) Connect the following SST between ignition coil and vehicle side of ignition coil connector.
(If your tachometer is clamp on type this operation is unnecessary.)

SST: 099991-87604-000
(3) Connect the tachometer to the engine.

CAUTION:

- Never allow the tachometer terminal to touch ground. It could result in damage of the ignition system.
- As some tachometers are not compatible with this ignition system, it is recommended to confirm the compatibility with your unit before its use.

(5) Connect a timing light to the resistive cord of the No. 1 cylinder (at the timing belt side.).
(6) Open the diagnosis connector cover.

NOTE:

- Be sure to prevent the entering of dust or water etc. into the diagnosis connector.
(7) Connect the T terminal with ground terminal in the diagnosis connector by following SST.

SST: 09991-87203-000

NOTE:

- Care must be exercised to ensure that no connection is made on terminals except for those specified.
Even slight contact of the other terminal caused serious malfunction.
(8) Start the engine.
(9) Ensure that the engine revolution speed is bellow 1000 rpm and stable.
If the engine revolution exceeds 1000 rpm or it is unstable, adjust the engine revolution speed to the idle speed.
(See procedure of idle speed adjustment.)
(10) Check to see if the ignition timing mark of the crankshaft pulley is aligned with the indicator of the timing belt cover, using the timing light.
Adjust the ignition timing by turning the distributor, if the ignition timing mark is not aligned with timing belt cover.

(11) Adjustment of ignition timing
(1) Loosen the distributor attaching bolts.
(2) Adjust the distributor installation angle by turning the distributor, until the ignition timing mark of the crankshaft pultey is aligned with the indicator of the timing belt cover.
REFERENCE:
- If the distributor is turned clockwise, the timing will be advanced. Conversely, if the distributor is turned counterclockwise, the ignition timing will be retarded.
(3) Tighten the distributor attaching bolts to the specified torque, making sure that the ignition timing is not disturbed.

Tightening Torque: $14.7-21.6 \mathrm{~N} \cdot \mathrm{~m}$
(1.5-2.2 kgf-m, $10.8 \cdot 15.9 \mathrm{ft}-\mathrm{lb})$
(12) Stop the engine.
(13) Remove the tachometer.
(14) Remove the SST from distributor connectors.
(15) Reconnect the distributor connector.
(16) Remove the SST from the diagnosis connector. NOTE:

- Care must be exercised to ensure that no connection is made on terminats except for those specified.
Even slight contact of the other terminal caused serious malfunction.
(17) Close the diagnosis connector cover.

NOTE:

- Be sure to prevent the entering of dust or water etc. into the diagnosis connector.
Entering of dust, water or contamination of terminals in the diagnosis connector caused serious malfunction, due to lowering the insulation of each terminals.
(18) Adjust the idie speed.
(See procedure of idle speed adjustment.)

8. Inspection and adjustment of idle speed

Preparation to be made prior to idle speed adjustment.

- Check and adjust the ignition timing.
- Apply the parking brake fully.
- Warm up the engine thoroughly. (continue engine warm-up for another 10 minutes after the the fan motor has started its operation.)
- All accessory switches are turned OFF.

On those vehicles equipped with a day-lamp system, set the lamp control switch to the first stage.

- The air cleaner element is installed.
- All vacuum hose are connected.
- Ensure that the intake system exhibits no air leakage.
- Ensure that the exhaust system exhibits no air leakage.
- On the automatic transmission vehicle, the shift lever is placed in the $[\mathrm{N}]$ or $[\mathrm{P}]$ range.
- On the manual transmission vehicle, the shift lever is placed in the neutral range.
- The choke valve is open fully. (HC-C engine only)
- Position the steering wheel to straight a head direction. (Only for power steering equipped model.) NOTE:
- Do not perform the engine idle speed adjustment while the fan motor is functioning.
- On those vehicle equipped with a day-lamp system, set the lamp control switch to the first stage with the head lamps turned OFF.
- Use the SST (09243-00020-000) to adjust the idle mixture adjusting screw. (HC-C engine only)
[HC-C engine]
(1) Connection of tachometer
(1) Connect the following SST between distributor and vehicle side of distributor connector.

SST: 09991-87604-000
(If your tachometer is clamp on type this operation is unnecessary.)
CAUTION:

- Never allow the tachometer terminal to touch ground. It could result in damage of the ignition system.
- As some tachometers are not compatible with this ignition system, it is recommended to contirm the compatibility with your unit before its use.
(2) Connect the tachometer to the engine, foilowing by instruction of the manufacturer of tachometer.
(2) Back off the idle mixture adjusting screw four turns from the fully closed state.
NOTE:
- For this adjustment, it is necessary to prepare the following SST.
SST: 09243-00020-000
- Do not adjust the idle mixture adjusting screw, if $\mathrm{HC} / \mathrm{CO}$ meter is not available.
- Be sure to inspect the $\mathrm{HC} / \mathrm{CO}$ concentrations, when idle mixture adjusting screw is adjusted. (HC-C engine only, for inspection of $\mathrm{HC/CO}$ concentrations, refer to EC section of the service manual.)

(3) Start the engine.
(4) Adjust the throttle adjusting screw so that the engine idle speed may become the specified value.

Specified Idle Speed
MT: $800 \pm 50 \mathrm{rpm}$
AT: $850 \pm 50 \mathrm{rpm}$
(5) Stop the engine.
(6) Remove the tachometer.
(7) Remove the SST.
(8) Connect the distributor.
[HC-E, HD-E engine]
(1) Connection of tachometer
(1) Connect the following SST between ignition coil and vehicle side of ignition coil connector.
(If your tachometer is clamp on type this operation is unnecessary.)

SST: 09991-87604-000

CAUTION:

- Never allow the tachometer terminal to touch ground. It could result in damage of the ignition system.
- As some tachometers are not compatible with this ignition system, it is recommended to confirm the compatibility with your unit before its use.
(2) Connect the tachometer to the engine by follow the instruction of the manufacturer of tachometer.
(2) Start the engine.
(3) Race the engine to 2000 to 3000 rpm for two or three times.
(4) Remove the idle adjusting screw cap from the throttle body.
(5) Adjust the idle adjusting screw so that the engine idle speed may become the specified value.

Specified Idle Speed
MT: $800 \pm 50 \mathrm{rpm}$
AT: $850 \pm 50 \mathrm{rpm}$
NOTE:

- When the idle adjusting screw is turned clockwise idle speed will be decrease, whereas when the idle adjusting screw is turned counterclockwise idle speed will be increase.
(6) Instalk the idle speed adjusting screw cap to the throtile valve.
(7) Stop the engine.
(8) Remove the tachometer.
(9) Remove the SST from distributor and vehicle side of distributor connector. (If it connected.)
(10) Connect the distributor connector.

GMAOO147.99999

GMADO1.49-99999

9. Inspection and adjustment of throttle positioner or dashpot

Preparation to be made prior to throttle positioner check.

- Check and adjust the ignition timing.
- Check and adjust the idle speed.
- Apply the parking brake fully.
- Warm up the engine thoroughly. (continue engine warm-up for another 10 minutes after the fan motor has started its operation.)
- All accessory switches are turned OFF.
- On those vehicles equipped with a day-lamp system, set the lamp control switch to the first stage.
- The air cleaner element is installed.
- All vacuum hose are connected.
- Ensure that the intake system exhibits no air leakage.
- Ensure that the exhaust system exhibits no air leakage.
- On the automatic transmission vehicle, the shift lever is placed in the $[N]$ or $[P]$ range.
- On the manual transmission vehicle, the shift lever is placed in the neutral position.
- The choke valve is open fully. (HC-C engine only)
- Position the steering wheel to straight a head direction. (Only for power steering system equippta vehicles.)
NOTE:
- Do not perform the throttle positioner adjustment while the fan motor is functioning.
- On those vehicle equipped with a day-lamp system, set the lamp control switch to the first stage with the head lamps turned OFF.
- Use the SST (09243-00020-000) to adjust the idle mixture adjusting screw. (HC-C engine only)
(1) Connect the following SST between distributor and vehicle side of distributor connector.

SST: 09991-87604-000
(If your tachometer is clamp on type this operation is unnecessary.)
CAUTION:

- Never allow the tachometer terminal to touch ground. It could result in clamage of the ignition system.

- As some tachometers are not compatible with this ignition system, it is recommended to confirm the compatibility with your unit before its use.

Connect the tachometer to the engine, following by instruction of the manufacturer of tachometer.
(2) Disconnect the vacuum hose from the throttle positioner.
(3) Plug the disconnected hose, using the following SST.

SST: 09258-00030-000
(4) Ensure that the throttle positioner shaft is stretched fully.
(5) Start the engine.
(6) Check of touch revolution speed of throttle positioner The touch revolution speed of the throttle positioner means the engine revolution speed at the time when the adjusting screw of the throttle lever makes contact with the dashpot shaft.

Touch Revolution: $1800 \pm 50 \mathrm{rpm}$
If the touch revolution speed dose not conform to the specification, turn the adjusting screw so that the touch revolution speed may become the specified engine speed.
NOTE:

- On the automatic transmission vehicle, the adjustment should be performed with the air cleaner assembly removed. However, be sure to plug the vacuum hose connected to the ITC valve.
(7) Remove the SST, which plug the vacuum hose.
(8) Connect the vacuum hose to the throttle positioner.
(9) Hold the engine revolution speed at 3000 rpm for five seconds.
(10) Close the throttle valve quickly.
(11) Measure the time required for the engine revolution speed to drop from 2000 rpm to 1000 rpm.

Specified Time: 1.0-3.0 seconds
(12) If the time dose not conform to the specification, check/replace the following point.
(1) VTV for restriction or malfunction.
(2) Related vacuum hoses and vacuum pipe for restrictión or damage.
Replace the defective part, if any malfunction is existing
Replace the throttle positioner, if above point has no trouble
(For details of throttle positioner replacement, refer to the FU section of the service manual.)
(13) Remove the tachometer.
(14) Remove the SST from ignition coil and vehicle side ignition coil connectors.
(15) Reconnect the vehicle side ignition coil connector to the ignition coil.

[$\mathrm{HC}-\mathrm{E}$ and HD -E engine]
(1) Connection of tachometer
(1) Connect the foliowing SST between distributor and vehicle side of distributor connector.

SST: 09991-87604-000
(If your tachometer is clamp on type this operation is unnecessary.)

CAUTION:

- Never allow the tachometer terminal to touch ground. It could result in damage of the ignition system.
- As some tachometers are not compatible with this ignition system, it is recommended to confirm the compatibility with your unit before its use.
(2) Connect the tachometer to the engine, foillowing by instruction of the manufacturer of tachometer.
(2) Remove the dashpot cap.
(3) Remove the dashpot filter.

NOTE:

- Be sure to prevent the dust or foreign substances from entering of dashpot.
(4) Start and warm-up the engine.
(5) Ensure that the adjusting screw of the dashpot is not contact with dashpot shaft when the engine revolution speed at 3500 rpm .
If adjusting screw of the dashpot is contact with the dashpot shaft, adjust the adjusting bolt height.
(6) Plug the air passage of the dashpot with your finger under condition describe in step (5).
(7) Slowly release the throttle lever.
(8) Ensure that the engine revolution with in the specified range.

Specified Engine Revolution

MT: $1300 \pm 100 \mathrm{rpm}$
AT: $2100 \pm 100 \mathrm{rpm}$
If not adjust the engine revolution speed by adjusting screw and repeat the step (5) to (8) again.
(9) Stop the engine.
(10) Install the dashpot filter.
(11) Install the dashpot cap.
(12) Remove the tachometer.
(13) Remove the SST from the distributor connectors.
(14) Connect the distributor connector.

10. Inspection and adjustment of $\mathrm{CO} / \mathrm{HC}$ concentrations [$\mathrm{HC}-\mathrm{C}$ engine]

Preparation to be made prior to check and adjustment of $\mathrm{CO} / \mathrm{HC}$ concentrations.

- Apply the parking brake fully.
- Check and adjust the ignition timing.
- Check and adjust the idle speed.
- Warm up the engine thoroughly. (continue engine warm-up for another 10 minutes after the fan motor has started its operation.)
- All accessory switches are turned OFF.
- The air cleaner element is installed.
- All vacuum hose are connected.
- Ensure that the intake system exhibits no air leakage.
- Ensure that the exhaust system exhibits no air leakage.
- On the automatic transmission vehicle, the shift lever is placed in the $[\mathrm{N}]$ or $[\mathrm{P}]$ range.
- On the manual transmission vehicle, the shift lever is placed in the neutral position.
- The choke valve is open fully.
- Position the steering wheel to straight a head direction. (Only for power steering equipped model.) NOTE:
- Use the SST (09243-00020-000) to adjust the idle mixture adjusting screw.
- Be sure to prepare the $\mathrm{CO} / \mathrm{HC}$ meter by following with the instruction of its manufacturer, before put into use.
(CO adjustment)
(1) Start and warm-up the engine.
(2) Ensure that the engine revolution with in the specification. (See the check and adjustment of idle speed.)
(3) Race the engine until its speed reaches 2000 rpm .
(4) Measurement of CO concentration at the idle speed Check too see if the CO concentration conform to the specification.

Specified CO Concentration: $1.5 \pm 0.5 \%$
If the measured concentration fail to conform to the specification, perform the adjustments described in the step (5) onward.
(5) Gradually turn the idle mixture adjusting screw, using the following SST, so that the CO concentration may conform to the specification.

SST: 09243-00020-000

NOTE:

- If the CO concentration is greatly deviated from the specification, set the mixture condition to initial setting. The initial setting can be achieved first by setting the idle mixture adjusting to the fully-closed position and then by backing off the screw four turns.

(6) Turn the throttle adjusting screw so that the idle speed may become the specified speed.

Engine Idle Speed
MT: $800 \pm 50 \mathrm{rpm}$
AT: $850 \pm 50 \mathrm{rpm}$
(7) Measurement of CO concentration

Check to see if the CO concentration conform to the specification.

Specified CO Concentration: $1.5 \pm 0.5 \%$
If the CO concentration fails to conform to the specification, perform the operation described in the step (3) onward.
However, if the repeated adjustment will not get the conformity to the specification, carry out the trouble shooting in accordance with the table mentioned bellow.
(HC adjustment)
(1) Start and warm-up the engine.
(2) Ensure that the engine revolution with in the specification.
(See the check and adjustment of idle speed.)
(3) Race the engine until its speed reaches 2000 rpm .
(4) Measurement of HC concentration at the idle speed Check too see if the HC concentration conform to the specification.

Specified HC Concentration: Not exceed
1000 PPM

If the measured concentration fail to conform to the specification, carry out the trouble shooting in accordance with the table mentioned bellow.

Possible Causes for Improper $\mathrm{CO} / \mathrm{HC}$ Concentrations

Possible	Item	CO concentration	HC concentration
Ignition timing		Remarks	
Valve clearances		O	
Improper valve seating		0	
Ignition system problems Spark plugs Resistive cord Distributor Igniton coil			
Air leakage in intake system	O	O	
ITC valve malfunctioning			

11. Checking of $\mathrm{CO} / \mathrm{HC}$ concentrations [HC-E and HD-E engines]

Preparation to be made prior to check of $\mathrm{CO} / \mathrm{HC}$ concentrations.

- Apply the parking brake fulliy.
- Check and adjust the ignition timing.
- Check and adjust the idle speed.
- Warm up the engine thoroughly. (continue engine warm-up for another 10 minutes after the fan motor has started its operation.)
- All accessory switches are turned OFF.
(On those vehicles equipped with a day-lamp system, set the lamp control switch to the first stage.)
- The air cleaner element is installed.
- All pipes and vacuum hose are connected.
- Ensure that the intake system exhibits no air leakage.
- Ensure that the exhaust system exhibits no gas leakage.
- On the automatic transmission vehicle, the shift lever is placed in the $[\mathrm{N}]$ or $[\mathrm{P}]$ range.
- On the manual transmission vehicle, the shift lever is placed in the neutral position.
- Position the steering wheel to straight a head direction. (Only for power steering equipped model.)
- Be sure to prepare the $\mathrm{CO} / \mathrm{HC}$ meter by following with the instruction of its manufacturer, before put into use.

NOTE:

- This check is used only to determine whether or not the idle $\mathrm{HC} / \mathrm{CO}$ emission comply with the regulations.
(1) Insert the $\mathrm{HC} / \mathrm{CO}$ testing probe into the tailpipe at least 400 mm (15.7 inches).
(2) Measurement of $\mathrm{HC} / \mathrm{CO}$ concentrations at idle speed

Wait at least one minute before the measurement so as to allow the concentrations to stabilize.
Complete the measurement within three minutes.
If the $\mathrm{HC/CO}$ concentrations do not conform to the regulations, see the following table for possible causes.
Trouble Shooting List

HC	CO	Problems	Possible causes
High	Normal	Rough idile	1. Faully ignition - Incorrect ignition timing - Fouled, shorted or improperly gapped spark plugs - Open or crossed high tension cords - Cracked distributor cap 2. Incorrect valve clearance 3. Leaky exhausi valves 4. Leaky cylinder
High	Low	Rough idle (Flucluation HC reading)	1. Lean mixture causing misfire
High	High	Rough idie (Black smoke from exhaust)	1. Restricted air filler 2. Faulty EFl system - Faulty pressure regułator - Clogged fuel return line - Defective water temp. sensor - Defective air temp. sensor - Faulty throltle position sensor - Faulty pressure sensor - Fautly ECU - Faully oxygen sensor

12. Change of coolant

WARNING:

- Never open the radiator cap when the engine is still hot.

CAUTION:

- As regards water to be used cooling water, use soft water which dose not contain salts of minerals, calcium, magnesium and so forth.
- If the coolant gets to the vehicle body, immediately flush away the coolant, using fresh water.
(1) Ensure that the coolant temperature is nearly the ambient temperature.
(2) Turn the radiator cap one step in an opening direction (counterclockwise direction) until you feel the first resistance.
(3) Lightly press the radiator cap for two three times to release the inner pressure of the radiator.
(4) Close the radiator cap. .
(5) Remove the two attaching bolts of the left side engine under cover.
(6) Place an adequate container under the drain plug.
(7) Drain the coolant by loosen the drain plug.
(8) Remove the radiator cap.
(9) Drain the coolant in the reserve tank.
(10) Close the drain plug, after draining the coolant.
(11) Fill the water to the radiator and reserve tank.
(12) Start the engine.

NOTE:

- If the water level in the radiator drops, replenish the water to full level.
(13) Close the radiator cap.
(14) Warm up the engine.
(15) Stop the engine.
(16) Cool down the water temperature to the ambient temperature.
(17) Repeat the steps (1) through (16) two or three times.
(18) Ensure that the coolant temperature is nearly the ambient temperature.
(19) Turn the radiator cap one step in an opening direction (clockwise direction) until you feel the first resistance.
(20) Lightly press the radiator cap for two three times to release the inner pressure of the radiator.
(21) Close the radiator cap.
(22) Place an adequate container under the drain plug.
(23) Drain the water by loosen the drain plug.
(24) Remove the radiator cap.
(25) Drain the water in the reserve tank.
(26) Replace the O-ring of the radiator drain plug with new one, after draining the water.
(27) Install the radiator drain plug to the radiator securely.
(28) Slowly pour a proper amount of antifreeze solution into the radiator in accordance with the instruction of the manufacturer of antifreeze solution.

GMAC0166:

CAUTION:

- Use a good brand of ethylene-glycol base antifreeze solution.

Coolant Capacity:
Unit: Liter

	HC-C engine		HC-E engine		HD-E engine
	Manual T/M	Automatic T / M	Manual T/M	Automatic T/M	Manual T/M
General specification	4.7	4.6	5.1	5.4	-
Tropical specification	5.5	5.4	-	-	-
European specification	-	-	4.7	4.6	4.7
European with tropical specification	-	-	5.5	5.4	-
Australian specification	-	-	5.1	5.4	-

NOTE:

- The amount above includes 0.6 liter for the reserve tank.
(29) Fill the water to the radiator and reserve tank.
(30) Start the engine.

NOTE:

- If the water level in the radiator drops, replenish the water to full level.
(31) Close the radiator cap.
(32) Ensure that no water leakage is present.

If water leakage is present, repair the water leakage.
(33) Warm up the engine, until the radiator fan motor starts to rotate.
(34) Stop the engine.
(35) Cool down the coolant temperature to the ambient temperature.
(36) Ensure that the coolant level in the reserve tank is not decrease.
If the coolant level in the reserve tank is decreased excessively or no coolant remain in the reserve tank. Check the coolant level in the radiator whether coolant in the radiator is in fult or not. If not replenish the water to the radiator, and repeat the steps (29) through (36) again.

(37) Turn the radiator cap one step in an opening direction (clockwise direction) until you feel the first resistance.
(38) Lightly press the radiator cap for two three times to release the inner pressure of the radiator.
(39) Remove the radiator cap.
(40) Ensure that the concentration of antifreeze solution in the radiator is meets to the instruction of the manufacturer of antifreeze solution by the densitometer. Adjust the concentration of the antifreeze solution in the radiator to the instruction of the manufacturer of antifreeze solution, if concentration dose not meets to the instruction of the manufacturer of antifreeze solution.
(41) Secure the radiator cap.
(42) Drain the water in the reserve tank.
(43) Pour the coolant as mixed with antifreeze solution and water in accordance with the instruction of the manufacturer of antifreeze solution to the full level of the reserve tank.
(44) Secure the reserve tank cap.
(45) Install the left side engine under cover to the vehicle with two attaching bolts.

Check the coolant in reserve tank.

SERVICE MANUAL

DAIHATSU

G200, G201

EFI System

FOREWORD

This service manual describes servicing procedures for the EFI and the outline of EFI, which is equipped on some models of the G200 and G201 with European specification.

This service manual omits the General Information section. Therefore, please refer to the general information section of the engine service manual of the G200 and G201 before reading this manual.

All information used in this manual was in effect at the time when the manual was printed. However, the specifications and procedure may be revised due to continuing improvements in the design without advance notice and without incurring any obligation to us.

Published in April, 1993

DAIHATSU MOTOR CO., LTD.

(c) 1993 DAIHATSU MOTOR CO., LTD.

All rights reserved. This material may not be reproduced or copied, in whole or in part, without written permission from Daihatsu Motor Co., Ltd.
\square
. - -

DAIHATSU G200, G201

CONTENTS

INTRODUCTION EF- 2
PRECAUTION EF- 3
INSPECTION PRECAUTIONS EF- 4
MAINTENANCE PRECAUTIONS EF- 4
TROUBLE SHOOTING EF- 9
TROUBLE SHOOTING HINTS EF- 9
SYSTEM DESCRIPTION EF-11
TROUBLE SHOOTING PROCEDURE EF-12
DIAGNOSIS SYSTEM EF-16
DESCRIPTION EF-16
DIAGNOSIS CODE EF-19
FAIL-SAFE FUNCTION EF-21
TROUBLE SHOOTING WITH VOLT/ OHMMETER EF-22
PREPARATION OF TROUBLE SHOOTING EF~22
CHECK PROCEDURE FOR
EFI SYSTEM EF-22
WIRING DIAGRAM EF-25
ECU (Electronic Control Unit) EF-26
ELECTRONIC CONTROL SYSTEM EF-32
LOCATION OF ELECTRONIC
CONTROL PARTS EF-32
INSPECTION OF ECU CIRCUIT EF-33
MAIN RELAY EF-35
CIRCUIT OPENING RELAY EF-38WATER TEMPERATURE SENSOREF-39
INTAKE AIR TEMPERATURE SENSOR EF-42
THROTTLE POSITION SENSOR (AT Vehicle) EF-44
THROTTLE POSITION SENSOR (MT Vehicle) EF-48
PRESSURE SENSOR EF-52
IDLE-UP VSV No. 1 EF~56
IDLE-UP VSV No. 2
(Only A/T Vehicte) FF-59
OXYGEN SENSOR EF-62 EF-62
IGNITION MONITOR EF-67
DISTRIBUTOR EF-70
SPEED SENSOR EF-71
STARTER SWITCH EF-72
AUTOMATIC TRANSMISSION CONTROL SYSTEM EF-73
AIR CONDITIONER SWITCH EF-79
FUEL SYSTEM EF-82
IN-VEHICLE INSPECTION EF-82
INJECTORS EF-90
FUEL TANK AND LINE EF-93
COMPONENTS EF-93
AIR INDUCTION SYSTEM EF-95
THROTTLE BODY EF-95
SST (Special Service Tools) EF-96
[Reference] EF-96

INTRODUCTION

The EF1 system consists of the following three systems given below:
(1) Fuel system
(2) Intake system
(3) Control system

The electronic control unit (ECU) incorporating a microcomputer controls the EFI system, based on signals inputted from various sensors.

Fuel system

The fuel system is a system which supplies the injectors with the fue! necessary for combustion.
Fuel sucked up from the fuel tank by means of the fuel pump is sent to the delivery pipe under a pressurized state.
The pressure regulator mounted at the delivery pipe keeps the fuel pressure higher than the surge tank inner pressure. In this way, the fuel injection amount for each injector energizing time is kept at a constant level.

Intake system

The intake system is a system which supplies each cylinder with air necessary for combustion.
Air sucked from the air cleaner passes through the throttle body to the surge tank. Then, the air is suckec to each cylinder through the intake manifold.

Control system

The control system is a system which controls the fuel amount, using the ECU, by detecting the engine and vehicle running conditions, based on signals inputted from various sensors to the ECU.
(1) EFl control system

Upon receiving those signals concerned with the intake air amount, engine speed and water temperature, the EFi control system controls the amount of fuel injection in such a way that an optimum air-to-fuel ratio for the engine may be attained.
(2) ESA (Electronic spark advance) control system

The ESA control system provides an optimum ignition timing, based on the engine speed and its load conditions.
(3) VSV control system

The VSV control system controls a VSV for controlling the idling speed.

Self diagnosis function

If any abnormality should occur in each input signal (e.g. each sensor, wire harness and connectors), th ECU memorizes this abnormality. Later, this abnormality is indicated during the trouble diagnosis period b ycodes through the blinking of check engine lamp. As regards important items, this system turns $O N$ the relevant check engine lamp, thus warning the driver of the abnormality.

Fail-safe function

In the event that any abnormality takes place in the signals inputted from the important sensors to the ECU and the control can no longer be continued based on the inputted data, an evacuation running is made possible using the data memorized in the ECU in advance. This function is called "fail-safe function."

Back-up function

In the event that the ECU encounters abnormality, this function makes it possible to perform evacuation running in accordance with the fuel injection amount and ignition timing that have been predetermined by the back-up data.

PRECAUTION

1. The engine control system has self diagnosis function. The ECU memorizes all malfunction codes which have occurred in the past and/or are occurring at present.
The memorized malfunction codes are erased when the battery ground cable is disconnected from the battery terminal. Hence, prior to starting any repairs, be sure to check to see if any malfunction code has been memorized.
2. When performing operations on the fuel system or its related operation, never smoke and keep away any fire.
3. Before disconnecting the fuel line, be sure to disconnect the battery ground cable from the negative terminal of the battery.
4. The fuel line is pressurized to a pressure about $250 \mathrm{kPa}\left(2.55 \mathrm{kgf} / \mathrm{cm}^{2}\right)$ higher than the pressure inside the surge tank. Therefore, when disconnecting the fuel line, be sure to loose the fuel line slowly and prevent the fuel from splashing with a cloth or the like.
5. Do not allow gasoline to get to any parts made of rubber, leather and resin and/or to the electric parts.
6. When cleaning the engine compartment with water, make sure that no water gets to the electrical system.
7. Ensure that the battery voltage should be 11 volts or more, before performing the inspection.

GEF00003-00000

INSPECTION PRECAUTIONS
MAINTENANCE PRECAUTIONS

1. Ensure that the engine is correctly tuned up.
2. Precautions during gauge connection
(1) Connecting the tachometer, connect the following SST between the ignition coil and the ignition coil connector of the engine wire.
SST: 09991-87604-000

NOTE:

- This does not apply if your tachometer is a pick-up type.
(2) Connect the measuring terminal of the tachometer to the measuring terminal of the SST.
NOTE:
- This does not apply if your tachometer is a pick-up type.
(3) Use the battery as power source for a timing light, tachometer and so forth.
(4) Never allow the tachometer terminal to touch the ground, for it could result in damage to the igniter and/or ignition coil.
(5) Some kinds of tachometers may not be suited for the ignition system of the vehicle. Therefore, ensure that your tachometer is compatible with the ignition system of the vehicle.

3. If engine misfire takes place, the following measures should be taken.
(1) Ensure that the battery terminals and so forth are connected properly.
(2) Handle the spark plug wires carefully.
(3) After completion of repairs, ensure that the ignition coil terminals and other ignition system wire are reconnected securely.
4. Precautions during oxygen sensor handling
(1) Do not drop the oxygen sensor or hit it to other objects.
(2) Do not immerse the sensor in water or do not cool it by water.
5. Do not open the cover of the ECU proper.
(Failure to observe this caution could cause ECU malfunction.)
6. Do not touch the screws of the bracket installed on the ECU proper.
(Failure to observe this caution could cause ECU malfunction.)

When the vehicle is equipped with wireless installation (HAM, CB, etc.)

The ECU has been so designed that it is resistant to external influence.
However, if a vehicle is equipped with a CB wireless installation and so forth (even if its output is only 10 W), it may affect the ECU adversely. Therefore, observe the following precautions.

1. Install an antenna at a place as far away as possible from the ECU.
The ECU is instailed at the lower side of heater assembly. Therefore, the antenna should be installed at the rear of the vehicle.
The antenna cord should be kept at least 20 cm away form the engine wire. Never wind the antenna with the engine wire with tapes.
2. Adjust the antenna output correctly.
3. Never install a wireless installation with a high output on the
 vehicle.

Air induction system

1. Unless all of the oil level gauge, oil filler cap, PCV hose and so forth are installed securely, the engine tune-up can not be performed properly.
2. If air leakage (air admission) is present between the throttle body and the cylinder head, the engine revolution speed can not be adjusted.

Electronic control system

1. Before disconnecting or meconnecting the connector of the sensor system of the EFI system, be sure to turn OFF the ignition switch and all accessory switches. Also, disconnect the battery ground cable from the battery negative terminal. Failure to observe this caution could cause ECU malfunction.

2. Before disconnecting or reconnecting the connector of the ECU proper of the EFI system, be sure to turn OFF the ignition switch and all accessory switches. Also, disconnect the battery ground cable from the battery negative terminal.
Failure to observe this caution could cause ECU malfunction.
3. Be sure to keep the number of disconnection/reconnection of the connector of the EFI system at a minimum level.
4. When installing the battery, care must be exercised not to mistake the battery polarity.
5. Never apply strong impacts to the EFI parts. Pay utmost attention during the installation/removal.

Especially, special caution must be exercised as to the handling of the ECU.
6. When the voltage or resistance of the ECU is measured during the check, never touch terminals other than the specified terminals. Failure to observe this caution could cause ECU malfunction.
7. Never open the cover of the ECU proper.
8. When the system is checked on a rainy day, be very careful not to allow water to get into connectors and/or terminals.
Also, when the engine compartment is washed, prevent water from being splashed to the EFI-related parts and wiring connectors.
9. Every EFI parts should be replaced as an assembly.
10. When disconnecting or reconnecting the wiring connector, care must be exercised as to the following points.
(1) Carefully observe the shape of the lock prior to the disconnecting/connection.
(2) Release the lock. Disconnect the connector.

NOTE:

- When disconnecting the connector, be sure to hold the connector hoider, not to pull the wire.
(3) Insert the connector, until the lock is engaged completely.
(4) Be sure to keep the number of disconnection/reconnection of the connector at a minimum level.

11. When checks are performed at the connector-side terminals, using a circuit tester, care must be exercised as to the following point.
Never apply such a force to the connector terminal that can deform the terminal.

12. When checking the fuel system, such as the injectors, pressure regulator and fuel pressures, use the following SSTs.

SSTs: 09268-87702-000 09283-87703-000 09991-87703-000 09268-87701-000 09842-30070-000

13. When measuring the voltage or resistance of each system, use the following SST.

SST: 09842-87706-000

Fuel system

1. The fuel line at the high-pressure side is pressurized to a fuel pressure of about $250 \mathrm{kPa}\left(2.55 \mathrm{kgi} / \mathrm{cm}^{2}\right)$. Therefore, a large amount of gasoline flows out when parts of the fuel line is disconnected. Hence, take the following countermeasures.
CAUTION:

- Release the inner pressure of the fuel tank by removing the fuel filler cap in advance.
(1) Place a suitable container, close or the like under the disconnecting connection.
(2) Loosen the connection slowly, while preventing the fuel from spiashing, using a suitable cloth or the like.
(3) Disconnect the connection.
(4) Plug the disconnected connection with a rubber plug or the like so that no dust may enter into the fuel line.

2. When connecting the flare nut or union boit of the high-pressure pipe, observe the following instructions.
[Union bolt type]
(1) Always use new gaskets.
(2) First, tighten the union bolt with your fingers.
(3) Next, tighten the union bolt to the specified torque.

Tightening Torque: $34.3-44.1 \mathrm{~N} \cdot \mathrm{~m}(3.5-4.5 \mathrm{kgf}-\mathrm{m})$
[Flare nut type]
(1) Coat the flare nut with a thin film of engine oil. Tighten the flare nut fully with your fingers.
(2) Tighten the flare nut to the specified torque.

Tightening Torque: $34.3-43.1 \mathrm{~N} \cdot \mathrm{~m}(3.5-4.4 \mathrm{kgf}-\mathrm{m})$

3. When removing/installing the injector, observe the following instructions.
(1) Do not reuse the O-ring.
(2) When installing the O-ring to the injector, be careful not to damage the O-ring.
(3) When connecting the injector to the delivery pipe, apply silicon oif to the O-ring of the injector in advance. (Never use engine oil, gear oil and so forth.)
(4) When connecting the injector to the delivery pipe, be very careful not to damage the O-ring of the injector.
4. Install the injector to the delivery pipe and cylinder head, as shown in the figure.
5. After completion of checks or repairs of the fuel system, be sure to ensure that no fuel leakage is present in the fuel system, following the procedure given below.
(1) Detach the diagnosis terminal cap.
(2) Short the fuel pump terminal with the ground terminal of the diagnosis connector, using the following SST.
SST: 09991-87703-000

CAUTION:

- As for the terminals other than those specified, never allow them to be connected or shorted.

NOTE:

- The diagnosis connector is located at the fender apron section on the left side of the engine compartment.
(3) Turn ON the ignition switch. (with the engine in a stopped state)
At this time, a fuel pressure of $250 \mathrm{kPa}\left(2.55 \mathrm{kgf} / \mathrm{cm}^{2}\right)$ is being applied to the fuel line.
Under this conditions, check the fuel line system for evidence of leakage.
If any leakage is present at the fuel line system, repair leaky points. Recheck the system for leakage.

(4) Stop the engine.
(5) Remove the SST from the diagnosis terminal.
(6) Connect the diagnosis terminal cap to the diagnosis terminal.

-ROUBLE SHOOTING

TROUBLE SHOOTING HINTS

1. In most cases, engine troubles are attributable to systems other than the EFI system. Prior to starting the trouble shooting for the EFI system, check other systems.
(1) Power supply

- Battery voltage
- Fuse blown
- Fusible link blown
(2) Body ground
(3) Fuel supply
- Fuel leakage
- Fuel filter clogged
- Fuel pump malfunctioning
(4) Ignition system
- Spark plugs faulty
- Spark plug wires fauity
- Distributor and igniter faulty
- Ignition coil faulty
(5) Air induction system
- Admission of air
(6) Others
- Ignition timing adjusted improperly
- Idle speed adjusted improperly
- Idle up control VSV malfunctioning
- etc.
?. Most of troubles related to the EFI system are merely caused by poor wire connections.
Ensure that connectors are connected securely.
Check connectors, being careful as to the following points.
(1) Visually inspect that terminais are not bent.
(2) Ensure that connectors are securely connected and locked.

GEF00027-99999
(3) Check to see if the maifunction phenomenon takes place when applying light vibration to the connector or the wire connected to the connector.

3. Prior to replacing the ECU, thoroughly perform the trouble shooting for possible items other than the ECU.
The ECU is a reliable, but an expensive part.
Even when the ECU has been replaced according to the check results of the trouble shooting and the relevant malfunction has been remedied, be sure to reinstall the old ECU so as to confirm that the malfunction was obviously caused by the faulty ECU.
4. For the trouble shooting, use a voit/ohmmeter whose internal resistance is $10 \mathrm{k} \Omega \mathrm{N}$ or more.
Use of a voit/ohmmeter whose internal resistance is less than $10 \mathrm{k} \Omega \mathrm{N}$ may cause an ECU malfunction or wrong diagnosis.
Furthermore, be sure to employ a meter whose resolution is 0.1 V or more, 0.5Ω or more and whose accuracy is $\pm 2 \%$ or more.

Gefocos1-00000

TROUBLE SHOOTING PROCEDURE

(1) Engine will not crank or cranks slowly

(2] Engine will not start (Engine cranks normally)

Check ECU.

4] Engine idle speed will not drop

[5] Rough iding

6] Poor driveability

DIAGNOSIS SYSTEM
 DESCRIPTION

A self-diagnosis system is built in the ECU. If any abnormality should occur in the signal systems of various sensors, the self-diagnosis system memorizes the malfunction code number in the ECU. In respect to important abnormalities, the check engine lamp at the instrument panel goes on, thus warning the driver of the abnormality.
When the abnormality is cleared, the check engine lamp goes out.
When the Test terminal of the diagnosis connector is shorted with the ground terminal, the malfunction code number that has been memorized in the ECU will be indicated in a form of blinking of the check engine lamp in the instrument panel.
This memorized malfunction code number is erased when the battery ground cable is disconnected from the negative (-) terminal of the battery, or when the back-up fuse in the relay block assembly is disconnected with the ignition key switch turned OFF.

GEFOCO42.00000

Check of "Check Engine" warning light

1. When the ignition switch is turned $O N$, the check engine lamp goes on.
(Engine is under a stopped state.)
2. When the engine starts, the check engine lamp goes off. If the check engine lamp remains illuminated, it indicates that the diagnosis system has detected system malfunctions.

Output of diagnosis codes

1. Initial conditions
(1) Battery voltage of 11 volts or more
(2) Throttle valve fully closed
(3) All accessory switches turned OFF

GEF00044-00000
2. Short the Test terminal of the diagnosis connector with the ground terminal, using the following SST.

SST: 09991-87703-000
NOTE:

- The diagnosis connector is located at the fender apron section on the left side of the engine compartment.

CAUTION:

- Care must be exercised to ensure that no connection is made on terminals except for those specified.

3. Set the ignition switch to the ON position. At this time, be careful not to start the engine.
4. Read the diagnosis code by observing the blinking number of the check engine lamp.
NOTE:

- If the check engine lamp fails to blink, it is likely that the ECU is malfunctioning. Hence, proceed to the inspection of the diagnosis system circuit.

Output of diagnosis code

(1) Indication of normal code

The engine check lamp giows for 0.25 second, 0.25 second later after the ignition switch has been turned ON. After a lapse of 0.25 second, the engine check lamp again glows for 0.25 second.
Then, this pattern will be repeated.
(2) Indication of malfunction code

- When a single maifunction code is indicated: The diagnosis code is composed of two digits. These two numbers are indicated by blinking of the check engine lamp. Four seconds later after the ignition switch has been turned ON, the check lamp indicates first the number of the tens digit of the diagnosis code by glowing the same times as the number. The lamp glows for 0.5 second each time and then it is extinguished for 0.5 second. After a pause of 1.5 seconds, the check lamp indicates the number of the units digit of the diagnosis code by glowing the same times as the number. The lamp glows for 0.5 second each time and then it is extinguished for 0.5 second. Then, this pattern will be repeated after a pause of 4 seconds.
- When plural malfunction codes are indicated: in cases where plural malfunction codes have been detected, the two-digit diagnosis codes are indicated in the sequence of the code number, starting from a smaller number. Each diagnosis code is indicated in the above described pattern. A pause of 2.5 seconds occurs between the outputs of respective diagnosis codes, thus separating one from the others. After all of the plural diagnosis codes that have been detected are indicated, the check engine lamp is extinguished for four seconds. Then, the detected piural diagnosis codes will be indicated again.

5. After the diagnosis codes have been read, remove the SST at the diagnosis connector.

IAGNOSIS CODE

When the diagnosis system detects malfunctions, the check engine lamp will go on without the diagnosis connector test terminal shorted.

Code NO.	Number of glowing of check engine lamp	Diagnosis item	Diagnosis contents	Trouble area	See page
13	$\overbrace{1}] \int_{3}$	Revolution signal	When Ne and/or G signal is not inputted within a rew seconds after engine starts cranking.	1. Distributor circuit 2. Distributor 3. $E C U$	$\begin{aligned} & E F-67 \\ & E F-70 \end{aligned}$
16	$-\int_{1}$	Ignition signal	No ignition confirmation signal is inputted.	1. Ignition circuit ($+\mathrm{B}, \mathrm{IGf}$) 2. Igniter 3. ECU	EF-67
21	$\int_{-2}^{\square} \int_{2}$	Oxygen sensor signal and/or fuel system	When the oxygen sensor signal circuit becomes open or shorted.	1. Oxygen sensor circuit 2. Oxygen sensor 3. ECU 4. Fuel system	EF-62
31	$\left.\square]_{3}\right] \prod_{1}^{\square}$	Pressure sensor	When the signal from pressure sensor becomes open or shorted.	1. Pressure sensor circuit 2. Pressure sensor 3. ECU	EF-52
41	H0]	Throttle position sensor signal	When the throttle position sensor signal circuit becomes open or shorted.	1. Throttle position sensor circuit 2. Throttle position sensor 3. ECU	$\begin{aligned} & \mathrm{EF}-44 \\ & \mathrm{EF}-48 \end{aligned}$
42	$\text { Hfden } \int_{2}^{[}$	Water temperature sensor	When the signal from the water temperature sensor circuit becomes open or shorted.	1. Water temperature sensor circuit 2. Water temperature sensor 3. ECU	EF-39
43	min	Intake air temperature sensor signal	When the intake air sensor signal circuit becomes open or shorted.	1. Air temperature sensor circuit 2. Air temperature sensor 3. ECU	EF-42
51	ntudel	Switch signal	When the air conditioner is turned ON, the idle switch is turned OFF or the power switch is turned OFF with the diagnosis connector terminal T shorted. However, no memorizing will take place.	1. Air conditioner switch circuit 2. Air conditioner switch 3. Idle switch circuit 4. Power switch circuit 5. Throttle position sensor 6. ECU	$\begin{aligned} & \text { EF-44 } \\ & \text { EF-48 } \\ & \text { EF-79 } \end{aligned}$
52	$-\int_{s} \int_{5} \int_{2}$	Vehicle speed sensor signal	When the vehicle speed sensor signal circuit becomes open or shorted.	1. Vehicle speed sensor circuit 2. Vehicle speed sensor 3. ECU	EF-71
54		Starter signal	When the starter signal becomes open or shorted. However, this cord may be memorized when the vehicle is started by being pushed.	1. Starter signal circuit 2. ECU	EF-72

Canceling Diagnosis Code

To erase the diagnosis codes memorized in the ECU after malfunctions have been repaired, disconnect the battery ground cable from the negative $(-)$ terminal of the battery for at least 10 seconds with the ignition switch turned OFF. [When ambient temperature is about $20^{\circ} \mathrm{C}$.]

CAUTION:

- Disconnection of the battery (-) terminal erases not only the diagnosis codes of the ECU for the EFI, but also the diagnosis codes of the AT and ABS systems. Therefore, be sure to confirm whether or not diagnosis codes of the
 AT and ABS systems are present before the diagnosis code for the EFI is erased.

AIL-SAFE FUNCTION

The fail-safe function has been set for the following five items. The fail-safe function operates when the following failure occurs in these items or when any diagnosis code is detected. Thus, the fail-safe function is a function whereby the engine is operated, based on a control program that has been pre-inputted to the ECU.

Item	Evaluation condition	Fail-safe function
Pressure sensor signal	- When input voltage from pressure sensor of 4.8 V or more or 0.6 V or less is detected	(At time of first detection) - Data will not be renewed. Engine is controlied according to data before detection. (When this signal is delected consecutively two times or more) - Engine is controlled with negative pressure of intake manifoid set to $-54.7 \mathrm{kPa}(-410 \mathrm{mmHg})$.
	- When failure is memorized into ECU as diagnosis code	- Engine is controlled, based on backup data that have been programmed in advance.
Ignition signal	- When no ignition confirmation signal is detected conseculively four times or more	- Fuel injection will be stopped.
Throttle position sensor signal (AT vehicle only)	- When input voltage from throttle position sensor of 4.8 V or more or 0.2 V or less is detected	(At time of first detection) - Data will not be renewed. Engine is controlied according to data before detection. (When this signal is detected consecutively two times or more) - Engine is controlled with throttle opening angle set to 25°.
Water temperature sensor signal	- When input value from water temperature sensor indicates that temperature is $-50^{\circ} \mathrm{C}$ or less or $139^{\circ} \mathrm{C}$ or more	(At time of first detection) - Data will not be renewed. Engine is controlied according to data before detection. (When this signat is detected consecutively two times or more) - Engine is controiled. based on backup data that have been programmed in advance.
Intake air temperature sensor signal	- When input value from intake air temperature sensor indicates that temperature is $-50^{\circ} \mathrm{C}$ or less or $139^{\circ} \mathrm{C}$ or more	(At time of first detection) - Data will not be renewed. Engine is controlled according to data before detection. (When this signal is detected consecutively two times or more) - Engine is controlied with data of intake air temperature set to $20^{\circ} \mathrm{C}$.

The fail-safe function operates for the aforesaid items and under the evaluation conditions described above. Even when no diagnosis code is memorized in the ECU, there is the possibility that open wire or short circuit is taking place at the sensor, connector or wiring. When conducting the check, pay utmost attention as to open wire, short circuit and so forth.

TeDOUBLE SHOOTING WITH VOLT/ AMMMETER
 PREPARATION OF TROUBLE SHOOTING

1. Disconnect the battery ground cable from the negative (-) terminal of the battery.
2. Remove the front floor side cover.
3. Disconnect the engine harness from ECU.
4. Connect the following SST between the engine wire and the ECU.

SST: 09842-87706-000
5. Reconnect the battery ground cable to the negative (-) terminal of the battery.
CAUTION:

- After completion of the inspection, before the SST is removed, be sure to disconnect the battery ground cable from the negative $(-)$ terminal of the battery.
- After the engine harness has been connected to the ECU, reconnect the battery ground cable to the negative $(-)$ terminal of the battery.
- Before using the SST, be sure to check to see if short or open wire exists between the terminals.

CHECK PROCEDURE FOR EFI SYSTEM

NOTE:

1. The EFI circuit can be checked by measuring the resistance and voltage at the SST terminals.
2. The voltage check should be conducted under a condition where all connectors are connected.
3. Prior to the check, ensure that the battery voltage is 11 V or more when the ignition switch is turned ON.
4. If any probiem is encountered during this check, see the section under "Trouble Shooting for EFI Electronic Circuit with Volt/Ohmmeter."

CAUTION:

- For the trouble shooting, use a voltohmmeter whose internal impedance is more than $10 \mathrm{k} \Omega / \mathrm{V}$.
Use of a volt/ohmmeter whose internal resistance is $10 \mathrm{k} \Omega \mathrm{V}$ or less may cause ECU malfunction and/or misjudgment.
- No terminal except for the specified terminal should be connected. Failure to observe this caution may cause ECU malfunction.

GEF00055-00000

mrangement of input/output terminals

(ECU side)

11	10	9		7	6	5	4	3	2	1
43	42				38		36	35	34	33

| | 17 | 16 | 15 | 14 | 13 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 48 | 47 | 46 | 45 | 44 |

32	31		29	28		26	25	24	23	22	21	20
64						58	57	56		54		52

(Connector side)

C | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | 34 | 35 | 36 | 37 | 38 | | | | 42 | 43 |

3 | 12 | 13 | 14 | 15 | 16 | 17 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 44 | 45 | 46 | 47 | 48 | | |

A | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 28 | 29 | | 31 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 52 | | 54 | | 56 | 57 | 58 | | | | | |

EF-24

No.	Contents of connection	No.	Contents of connection
1	Battery (Back-up power supply)	33	Power supply
2	Charging system cut-off relay	34	Power supply
3	Charging system control signal	35	Circuit opening relay (fuel pump)
4	Air conditioner cut-off signal	36	VF monitor terminal
5	Check engine lamp	37	-
6	A/T M / T detecting terminal	38	Test terminal
7	Torque reduction control signal	39	-
8	-	40	-
9	Speed sensor	41	-
10	Air conditioner switch	42	Electrical load signal No. 2
11	Starter switch	43	Electrical load signal No. 1
12	Sensor system power supply	44	Sensor system ground
13	Pressure sensor	45	Sensor system ground
14	Intake air temperature sensor	46	Throttie position sensor
15	Coolant temperature sensor	47	Throttle position switch (ldle)
16	Throttle position switch (Power)	48	ECU case ground
17	Oxygen sensor	49	. -
18	-	50	-
19	-	51	-
20	Crank angle sensor	52	Power system ground
21	Crank angle sensor ground	53	-
22	Ignition monitor	54	Power system ground
23	Parking signal	55	-
24	Neutral signal	56	Sensor system ground
25	Coolant temperature sensor signal	57	Throttle position sensor signal
26	Throttle position sensor power supply	58	Ignition signal
27	-	59	-
28	tdle-up control VSV No. 2	60	-
29	Idle-up control VSV No. 1	61	-
30	-	62	-
31	Injector	63	-
32	Power system ground	64	Power system ground

WIRING DIAGRAM

ECU (Electronic Control Unit)

NOTE:

- Even when the replacement of the ECU is required in each check, make sure that the ECU malfunction has not been caused by factors other than the ECU by carrying out the following checks. Then, proceed to replace the ECU.

1. Measurement of ECU input/output voltage NOTE:

- The wiring circuit of the EFI can be checked by measuring the voltage or resistance at ECU terminals.
- The measurement of voltage should be conducted while all of the connectors are connected.
- Make sure that the battery voltage is 11 voit or more when the ignition switch is turned ON .
(1) Preparation of measurement
(1) Disconnect the ground cable terminal from the negative terminal (-) of the battery.
(2) Remove the front floor side cover under the heater unit.
(3) Connect the SST between the ECU and the engine wire.
SST: 09842-87706-000

NOTE:

- Before the SST is installed, be sure to perform continuity test and short test between the SST terminals.

(4) Connect the ground cable terminal to the negative $(-)$ terminal of the battery.
(2) Measure the voltage or resistance between each specified terminal. Then, check that the measured voltage and resistance conform to the specifications. Perform the check and repair in accordance with the flow chart given below.

NOTE:

- Even when the trouble has been solved by replacing the ECU, be sure to install the old ECU again. Thus, confirm that the trouble was attributable to the old ECU.

Inspection of terminal voltage and resistance of ECU.

1. Measurement of ECU voltage

NOTE:

- The wiring circuit of the EFI can be checked by measuring the voltage and resistance at the ECU terminals.
- The measurement of voitage should be conducted while all of the connectors are connected.
- Make sure that the battery voltage is 11 volts or more when the ignition switch is turned ON.

GEF00067-00000
(1) Disconnect the battery ground cable from the negative terminal (-) of the battery.
(2) Remove the front floor side cover under the heater unit.
(3) Connect the SST between the ECU and the engine wire. SST: 09842-87706-000
(4) Connect the battery ground cable to the negative terminal $(-)$ of the battery.
NOTE:

- After completion of the inspection, before the SST is removed, be sure to disconnect the battery ground cable from the negative $(-)$ battery terminal.
After the ECU and engine wire have been connected, reconnect the battery ground cable to the negative $(-)$ battery terminal.

. oltage at ECU connector

Terminal	STD voltage	Condition	
(1)-(1)	Approx. Battery voltage	All time.	
(2)- (2)	Approx. Battery voltage	When engine is running with ignition switch is iurned ON.	
(3) - (3)	Approx. Battery voltage	When engine is running with ignition switch is turned ON .	
(4)-313	$4.5 \cdot 5.5 \mathrm{~V}$	Ignition switch turned ON	When air conditioner switch is turned ON
	Less than 2.5 V	When quick acceleration is made with air conditioner switch turned ON (During full throttle operation).	
(3) - 31	Less than 3.5 V	Ignition switch turned ON	
	Approx. Battery voltage	When engine is running with ignition switch turned ON and diagnosis code is normal during diagnosis code check.	
(3)- (3)	Less than 3 V	Ignition switch turned ON	in case of AT vehicle
	Approx. Battery voltage	tgnition switch turned ON	In case of MT vehicle
(7) - (7)	More than 4 V	Ignition switch turned ON	
(9)-3	Change in voltage between 0 to $4.5 \cdot 5.5 \mathrm{~V}$	Ignition switch turned ON	When vehicle is moving.
(13) - (2)	Approx. Battery voltage	When air conditioner switch is turned ON while engine is running.	
(11) - (27)	Less than 0.5 V	All time.	
	9-15.5V	When ignition switch is set to ST position.	
(12) - (1)	4.5-5.5V	Ignition switch turned ON	
(1)-3	3.2-4.0V	Ignition switch turned ON	When atmospheric pressure is 101 kPa (760 mmHg)
(14) - (1)	$0.9 \cdot 3.0 \mathrm{~V}$	Ignition switch turned ON	Temperature of air in air cleaner is $20^{\circ} \mathrm{C}$
(16) -(1)	0.1-0.7V	Ignition switch turned ON	Cooiant temperature is $80^{\circ} \mathrm{C}$
(16) - (14)	Approx. Battery voltage	Ignition switch turned ON (MT vehicle only)	Throttle valve is fully closed.
	Less than 3 V		Throttle valve is fully opened.
(17) - 자)	Change in output voltage	When engine speed is held at 3000 rpm for two minutes after engine has fully warmed up.	
(27) - (27)	About 0.6V	Ignition switch turned ON	
(21) - (13)	About 0.6V	Ignition switch turned ON	
(28) - 22	$0.5 \cdot 1.4 \mathrm{~V}$	Ignition switch turned ON	
(2) - 3	Less than 3 V	Ignition switch furned ON	When shift lever is in P-range
	Approx. Battery voltage		When shift lever is in a range other than P-range
(2) - 32	Less than 3 V	Ignition switch turned ON	When shift lever is in N -range
	Approx. Battery voitage		When shift lever is in a range other than N -range
(3) - (2)	Less than 1.5 V	Ignition switch turned ON	Coolant temperature is below $32^{\circ} \mathrm{C}$
	4.5-5.5V		Coolant temperature is above $45^{\circ} \mathrm{C}$
(27) - (3)	4.5-5.5V	Ignition switch furned ON	
(27) - 38	Approx. Battery vollage	Ignition switch turned ON	
	Less than 3.5 V	When heater fan switch, headlamp switch, defogger switch and radiator fan switch is turned ON while engine is running	

Terminal	STD voitage		Condition
(29) - 33	Approx. Battery voitage	lgnition switch turned ON	
	Less than 3.5V	After a lapse of at least 30 seconds after engine starting.	
(11) - (3)	Approx. Battery voltage	Ignition switch turned ON	
(33) - 32	Approx. Battery voltage	Ignition switch turned ON	
(44) - (37)	Approx. Battery voltage	Ignition switch turned ON	
(3) - 3	Approx. Battery voltage	Ignition switch turned ON	When engine is stopped.
	Less than 3.0V		When engine is running.
(2) - (3)	Approx. Battery voitage	Ignition switch turned ON	Test terminal OFF
(12) - (53)	Less than 3.0V	Ignition switch turned ON	When heater control switch is turned ON
(17) - (5)	Approx. Battery voitage	Ignition switch turned ON	When head-lamp and/or defogger switch is turned ON
(46) - 41	$0.3-0.9 \mathrm{~V}$	Ignition switch turned ON (AT vehicle only)	Throttle valve is fully closed.
	3.4-4.0V		Throttle valve is fully opened.
(41) - (1)	Less than 3.0V	Ignition switch turned ON	Throttle valve is fully closed.
	Approx. Battery voltage		Throttle valve is fulify opened.
(57) - 3	0.3-0.9V	Ignition switch turned ON (AT vehicle orily)	Throttle valve is fully closed.
	3.4-4.0V		Throttle vaive is fully opened.
(38) - 3	OV	Ignition switch turned ON	
	AC $0.3-2.0 \mathrm{~V}$	When engine is running	

- Measurement of resistance of ECU

CAUTION:

- Be sure to conduct the resistance measurement at the SST terminals.
(1) Disconnect the battery ground cable from the negative $(-)$ terminal of the battery.
(2) Remove the front floor side cover under the heater unit.
(3) Disconnect the engine wire from the ECU.
(4) Connect the SST to the engine wire side. (Never connect the SST to the ECU side.)
SST: 09842-87706-000

Qesistance at ECU terminal

Terminal	Resistance	Condition
(19) - 44	$100 \mathrm{k} \Omega$ or more	Throttle valve is fully closed.
	$2.5 \mathrm{k} \Omega$ or less	Throttle valve is fully opened.
(16) - 47	About $0.32 \mathrm{k} \Omega$	Cooiant temperature is $80^{\circ} \mathrm{C}$
(11) - (1)	About $2.45 \mathrm{k} \Omega$	Temperature of air in air cteaner is $20^{\circ} \mathrm{C}$
(7) - (1)	$2.5 \mathrm{k} \Omega$ or less	Throtte valve is fully closed.
	$100 \mathrm{k} \Omega$ or more	Throttle valve is fully opened.
(64)-(4)	About $0.4 \mathrm{k} \Omega$	Throtte valve is fully closed.
	About $3.1 \mathrm{k} \Omega$	Throttle valve is fuily opened.

ELECTRONIC CONTROL SYSTEM

 LOCATION OF ELECTRONIC CONTROL PARTS

NSPECTION OF ECU CIRCUIT

Inspection of diagnosis system circuit

1st step

2nd step
Check that check engine lamp goes off when engine YES System is normal. starts.

YES

NO

Check wiring between ECU and check engine lamp.	Repair or replace
OK	

YES
After trouble shooting according to diagnosis codes has been performed, start engine. Check that check
 engine lamp goes off

YES

System is normal.
Erase diagnosis code.

IAIN RELAY

Inspection of EFI main relay

1. Check of main relay operation

When the ignition switch is turned ON, check to see if the relay emits an operating sound. Or check to see if you will feel an operating vibration with a screwdriver or the like placed on the relay.

CAUTION:

- The relay may become very hot during the operation. Hence, do not touch the relay with your hand.

2. Inspection of relay continuity
(1) Check that there is the specified resistance between the terminals (1) and (2).
Resistance: 40-100 Ω
(2) Check that there is no continuity between the terminals (3) and (4).
(3) Check that there is no continuity between the terminals (1) and (3) and also between the terminals (1) and (4).
(4) Check that there is no continuity between the terminals (2) and (3) and also between the terminais (2) and (4). if the continuity test resuits do not conform to specifications, replace the relay.
3. Inspection of relay operation
(1) Apply the battery voltage across the terminals (1) and (2).
(2) Check that there is continuity between the terminals (3) and (4).
If the operation test results do not conform to specifications. replace the relay.

Terminals	Trouble	Conditions	STD voltage
(D) (32)	No voltage	At all time	$10-15.5$
(3) -33	No voltage	Ignition switch ON	$10-15.5$

GEF00084-99999
If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

- (1) - (32)

(33) or (34) - (32)

There is no voltage between SST terminal or 38 and 3 .
OK
Check that there is voltage between SST terminal (13) or (3) and body ground when ignition switch is turned ON.

CIRCUIT OPENING RELAY

Inspection of circuit opening relay

1. Check of fuel pump operation
(1) Disconnect the terminal ST of the starter.

CAUTION:

- Care must be exercised to ensure that the disconnected terminal is not grounded.

(2) When the ignition switch is set to the ST position, check to see if the relay emits an operating sound. Or check to see if you will feel an operating vibration with a screwdriver or the like placed on the relay.
NOTE:
- Upon completion of the inspection, be sure to reconnect the terminal ST of the starter.

CAUTION:

- The relay may become very hot during the operation. Hence, do not touch the relay with your hand.

-2. Inspection of relay continuity
(1) Check that there is the specified resistance between respective terminals.

Terminals	Specified resistance
(1) - (2)	More than $10 \mathrm{M} \Omega$
(3) - (4)	$120-150 \Omega$
(5) - (6)	$20-30 \Omega$

(2) Confirmation of continuity between terminals Ensure that no continuity exists between terminals, except for between terminals (3) and (4) as well as terminals (5) and (6).

If the continuity test revealed that continuity exists be-- tween terminals other than the specified ones, replace the circuit opening relay.

GEFOOOSO.99999

WATER TEMPERATURE SENSOR

Inspection of water temperature sensor

Measurement of resistance of water temperature sensor.

1. Disconnect the connector.

2. Measure the temperature of the water temperature sensor body.
3. Measure the resistance between the terminals of the water temperature sensor.

Resistance: About $0.32 \mathrm{k} \Omega$ (at $80^{\circ} \mathrm{C}$)
If the measured resistance does not conform to the specification, replace the water temperature sensor.

NOTE:

- Before the water temperature sensor is removed, drain the coolant.
- After completion of the sensor replacement, refill the coolant.

4. Check that there is no continuity between each terminal of the water temperature sensor and the body.
If there is continuity, replace the water temperature sensor.? NOTE:

- Before the water temperature sensor is removed, drain the coolant.
- After completion of the sensor replacement, refill the coolant.

	STD voltage
	$0.1-0.7$

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.
[1] There is no specified voltage between SST terminals (16) and 44 when ignition switch is turned ON .
[2] Check that there is voltage between SST terminais (3) or (2) and body ground when ignition switch is turned ON.

INTAKE AIR TEMPERATURE SENSOR

2. Remove the intake air temperature sensor from the air cleaner case.
3. Submerge the heating sensing section of the intake air temperature sensor into water whose temperature is at $20^{\circ} \mathrm{C}$.

4. Measure the resistance between the terminals of the intake air temperature sensor.

Resistance: About $2.45 \mathrm{k} \Omega$ (at $20^{\circ} \mathrm{C}$)
If the measured resistance does not conform to the specification, repiace the intake air temperature sensor.
5. Install the intake air temperature sensor into the air cleaner case.
6. Connect the intake air temperature sensor connector.

STD voltage
About $0.9-3.0$

GEFOO106-99999
If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

THROTTLE POSITION SENSOR (AT Vehicle)

GEF00100-99949

Inspection of throttle position sensor

Measurement of resistance of throttle position sensor

1. Disconnect the connector.

GEF00109-99994
2. Measurement of resistance between the terminals of throttie position sensor.
(1) Measure the resistance between (12) and (44).

Resistance: $5 \mathrm{k} \Omega$ or less (at $25^{\circ} \mathrm{C}$)
If the measured resistance does not conform to the specification, replace the throttle body.
(2) Measure the resistance between (46) and (44) under the following conditions.

Throttle valve closed fully	About $4.5 \mathrm{k} \Omega$ (at $25^{\circ} \mathrm{C}$)
Throttie valve opened fully	About $1.1 \mathrm{k} \Omega$ (at $25^{\circ} \mathrm{C}$)
Resistance value should change smoothly from full closing to fuli opening of throttle valve.	

If the measured resistance does not conform to the specification, replace the throttle body.

(3) Measure the resistance between (44) and (47) under the following conditions.

Throttle valve closed fully	$2.3 \mathrm{k} \Omega$ or less $\left(25^{\circ} \mathrm{C}\right)$
Throttle valve opened more than 1.5°	$1000 \mathrm{k} \Omega$ or more

If the measured resistance does not conform to the specification, replace the throttle body.

Terminal	Trouble	Conditions		STD voltage
(13) - 44	No voltage	Ignition switch ON		4.5-5.5
(14) - 16		Ignition switch ON	Throttle valve closed	0.3-0.9
			Throttle valve fully opened	3.6-4.2

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

- (12)-44
[1] There is no voltage between SST terminals (13) and when ignition switch is turned ON.
[2] Check that there is voltage between SST terminal (3) or (3) and body ground when ignition switch is turned $O N$.

Refer to (3) - (2) trouble section No. 1.

Repair or replace wiring.

Check ECU.

- (44) - (48)
[1] There is no specified voltage between SST terminals (18) and (46) when ignition switch is turned ON.
(2) Check that there is voltage between SST terminais 38) or (39 and body ground when ignition switch is turned ON.

No
OK
Repair or replace.

Reier to (33) - 37 trouble section No. 1.
OK
Check throttle position sensor.

Check wising between ECU and throttle position sensor.
OK
EAD

Repair or replace.

Check ECU.

THROTTLE POSITION SENSOR (MT Vehicle)

GEFCO1 16-99999

Inspection of throttle position sensor

1. Unlock the throttle position sensor connector and disconnect it.
CAUTION:

- When disconnecting the connector, care must be exercised to ensure that no excessive load is applied to the throttle position sensor.

2. Measure the resistance between the terminais of the throttle position sensor.
(1) Measure the resistance between (40) and (44) under the following condition.

Throttle valve closed fully	$2.3 \mathrm{k} \Omega$ or less (at $20^{\circ} \mathrm{C}$)
Throttle valve opened fully	$1000 \mathrm{k} \Omega$ or more

If measured resistance does not conform to the specification, replace the throttle body.

CAUTION:

- Be very careful not to damage the terminal.
(2) Measure the resistance between (16) and (44) under the following condition.

Throttle valve closed fully	$1000 \mathrm{k} \Omega$ or more
Throttle valve opened fully	$2.3 \mathrm{k} \Omega$ or less (at $20^{\circ} \mathrm{C}$)

If measured resistance does not conform to the specification, replace the throttle body.
CAUTION:

- Be very careful not to damage the terminal.

3. Connect the throttle position sensor connector.

CAUTION:

- When connecting the connector, care must be exercised to ensure that no excessive load is applied to the throttle position sensor.

Terminas	Trouble	Condition		STO voitage
(77) - (1)	More than 5 V	Ignition switch ON	Throtie valve fully closed	Less than 3.0V
	No voltage		Throttle valve fully opened	Approx. battery voltage
(16) -	No voltage	Ignition switch ON	Throttle valve fully closed	Approx. battery voltage
	More than 5V		Throttle vaive fully opened	Less than 3.0V

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section number "Preparation of Trouble-shooting" at page EF-22.

- (47) - (44)
(1] There is no specified voltage between SST terminals (4) and (47).
[2] Check that there is voltage between SST terminals (3) or (4) and (3) when ignition switch is turned ON.

- (16) - (44)
[1] There is no specified voltage between SST terminais (10) and (14).
[2] Check that there is voltage between SST terminals (3) or (3) and (3) when ignition switch is turned ON.

Check wiring between ECU and throttle position sensor,

Check ECU.

PRESSURE SENSOR

Inspection of pressure sensor

Measurement of output voltage of pressure sensor

1. Connection of SST
(1) Disconnect the battery ground cable from the negative $(-)$ terminal of the battery.

(2) Remove the front floor side cover under the heater unit.
3) Connect the following SST between the ECU and the engine wire.
SST: 09842-87706-000
NOTE:

- Before the SST is installed, be sure to perform continuity and short tests between SST terminals.
(4) Reconnect the battery ground cable to the negative terminal of the battery.

2. Check of output of pressure sensor
(1) Measure the voltage between the SST terminals (13) and 465) when the ignition switch is turned $O N$.

Specified value

Measuring point	Atmospheric pressure $\mathrm{kPa}(\mathrm{mmiHg})$	Voltage V
Altitude (height above sea level) m	(
0	$101.3(760)$	$3.2-4.0$
500	$95.5(716)$	$3.1-3.8$
1,000	$89.9(674)$	$3.0-3.6$

If the measured voitage does not conform to the specification, measure the voltage between the SST terminals (12) and (45). Ensure that the measured voltage is within a range of 4.5 to 5.5 volts. Then, proceed to replace the pressure sensor.
When the pressure sensor is replaced, it is necessary to replace the gas filter and air filter, too. If the measured voltage between the SST terminals (13) and (458) does not conform to the specification, check the wiring between the ECU and the pressure sensor.
(2) Disconnect the rubber hose connected to the pressure sensor. Apply a negative pressure of 26.7 kPa (200 mmHg) to the disconnected hose, using a MityVac . Check that the measured voltage between the SST terminals (137) and (45) drops by 0.65 to 0.95 voit.
If the measured voltage fails to drop by the specified value, replace the pressure sensor.
When the pressure sensor is replaced, it is necessary to repiace the gas filter and air filter, too.

管:
EF-54

Termiņals	Trouble	Conditions	STD voitage
(12) - (14)	No voltage	Ignition switch ON	4.5-5.5
(13) - (15)		Ignition switch ON At time of atmospheric pressure of $101.3 \mathrm{kPa}(760 \mathrm{mmHg})$	3.2-4.0

GEF00130-999St
If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

- (12) - (45)
[1] There is no voltage between SST terminals (13) and (6).
[2] Check that there is voltage between SST terminal or (32 and body ground when ignition switch is turned ON.

Replace. \square

OK
Check ECU.
\because (13)- (45)
[1] There is no voitage between SST terminats (13) - (3).
[2] Check that there is voltage between SST terminals (12) - (49.

Check wiring between ECU and pressure sensor.

IDLE-UP VSV No. 1

Inspection of idie-up VSV No. 1

1. Disconnect the battery ground cable from the negative (-) terminal of the battery.
2. Remove the front floor side cover under the heater unit.

3. Connect the following SST between the ECU and the engine wire.

SST: 09842-87706-000
NOTE:

- Before the SST is installed, be sure to perform continuity and short tests between SST terminals.

4. Reconnect the battery ground cable to the negative $(-)$ terminal of the battery.

5. Disconnect the rubber hose connected to the idle-up VSV No. 1.
6. Connect a MityVac to the idle-up VSV. Apply a negative pressure of 13.3 kPa (100 mmHg).
If no negative pressure is applied, replace the idle-up VSV.
7. Turn OFF all accessory switches.
8. Start the engine.

Ensure that the negative pressure being applied in the step (6) becomes zero.

If the negative pressure fails to become zero, check that there is voltage between the SST terminais (29) and (32).
if there is no voltage, check that the resistance between the terminals of the VSV is within a range of 30 to 50 ohms. (If the resistance fails to conform to the specification, replace the VSV.)
If the resistance between the terminals of the VSV conforms to the specification, check the wiring between the ECU and - the main relay. Repair the wiring, as required.
9. After the engine has warmed up completely, connect a MityVac to the VSV and apply a negative pressure of $13.3 \mathrm{kPa}(100 \mathrm{mmHg})$.
If no negative pressure is applied, check the wiring between the VSV and the ECU. Repair the wiring, as required. If the wiring is normal, check the voltage across the SST terminals (29) and (32) using the SST.
If a voltage is present across the terminals (29) and (32), check the wirings between the ECU and each of the headlamp switch, defogger switch, heater switch and radiator fan switch. Ensure that no voltage is applied across each switch and the ECU.

0. Turn ON the headlamp switch or the heater fan switch. Ensure that the negative pressure being applied in the step (10) becomes zero.

If the negative pressure faiis to become zero, check that there is voltage between the SST terminal (42). (43) and (32).
When there is no voltage, check the wiring between the headlamp switch or the heater fan switch and the ECU. Repair the wiring, as required.
If there is voltage, check the ECU.
11. Turn OFF the headlamp switch or the heater fan switch.

CAUTION:

- After completion of the inspection, before the SST is removed, be sure to disconnect the battery ground cable from the negative $(-)$ battery terminal.
After the ECU and engine wire have been connected, reconnect the battery ground cable to the negative (-) battery terminal.

1DLE-UP VSV No. 2 (Only A/T Vehicle)

Inspection of idle-up VSV No. 2

1. Disconnect the battery ground cable from the negative $(-)$ terminal of the battery.
2. Remove the front floor side cover under the heater unit.

3. Connect the following SST between the ECU and the engine wire.

SST: 09842-87706-000
NOTE:

- Before the SST is installed, be sure to perform continuity and short tests between SST terminals.

4. Reconnect the battery ground cable to the negative $(-)$ terminal of the battery.

5. Disconnect the rubber hose connected to the idle-up VSV No. 2.
6. Connect a MityVac to the idle-up VSV No. 2. Apply a negative pressure of 13.3 kPa (100 mmHg). If no negative pressure is applied, replace the idie-up VSV No. 2.
7. Turn OFF all accessory switches.
8. Start the engine.

Ensure that the negative pressure being applied in the step (6) becomes zero.

If the negative pressure fails to become zero, check that there is voitage between the SST terminais (28) and (32).
If there is no voltage, check that the resistance between the terminals of the VSV is within a range of 30 to 50 ohms. (If the resistance fails to conform to the specification, replace the VSV.)
If the resistance between the terminals of the VSV conforms to the specification, check the wiring between the ECU and the main relay. Repair the wiring, as required.
9. After the engine has warmed up completely, connect a MityVac to the VSV No. 2 and apply a negative pressure of 13.3 kPa (100 mmHg).

If no negative pressure is applied, check the wiring between the VSV No. 2 and the ECU. Repair the wiring, as required. If the wiring is normal, check to see if a voltage is applied across the SST terminals (28) and (32).
If a voltage is appiled across the terminals, check to see if a voltage is applied across the ECU and both or one of the headlamp switch and defogger switch. Also, check to see if a voltage is applied across the ECU and both or one of the heater fan switch and radiator fan switch.

10. Turn ON the headlamp switch and the heater fan switch. Ensure that the negative pressure being applied in the step (9) becomes zero.

If the negative pressure fails to become zero, check that there is voitage between the SST terminal (28) and (32).
When there is no voltage, check the wiring between the headlamp switch and the heater fan switch and the ECU. Repair the wiring, as required.
If there is voltage, check the ECU.
11. Turn OFF the headlamp switch and/or the defogger switch.
12. Apply a negative pressure of $13.3 \mathrm{kPa}(100 \mathrm{mmHg})$ to the VSV No. 2, using a MityVac.
13. Turn ON the blower fan switch. Check that the negative pressure being applied in the step (12) becomes zero. If the negative pressure fails to become zero, check there is voitage between the SST terminal (28) and (22.
When there is no voltage, check the wiring between the headlamp switch and the heater fan switch and ECU. Repair the wiring, as required.
CAUTION:

- After completion of the inspection, before the SST is removed, be sure to disconnect the battery ground cable from the negative (-) battery terminal.
After the ECU and engine wire have been connected, reconnect the battery ground cable to the negative $(-)$ battery terminal.

OXYGEN SENSOR

GEFO0153-99999

Inspection of oxygen sensor

1. Unit inspection of oxygen sensor

CAUTION:

- The inspection procedure should be employed only when the engine idle speed and acceleration performance are normal.
- When unstable engine idling or poor acceleration is taking place, it is impossibie to determine whether the oxygen sensor is normal or not, using this procedure. In this case, perform the system inspection.
(1) Disconnect the oxygen sensor connector.
(2) Start and warm up the engine completely.
(3) Connect a voltmeter to the connector terminal of the oxygen sensor.
(4) Depress the acceierator pedal and hold the engine revolution at about 3000 rpm . At this time. ensure that the reading of the voltmeter registers 0.45 V or more. Replace the oxygen sensor with a new part if the reading will not register 0.45 V or more.
(5) Remove the voltmeter from the oxygen sensor connector terminal.
(6) Reconnect the oxygen sensor connector.
(7) Connect the connector to the connector clamp.

2. Inspection of oxygen sensor system
(1) Remove the cap of the check connector. Connect the following SST to the diagnosis connector.
SST: 09991-87703-000
(2) Start and warm up the engine completely.
(3) Connect the test terminal and ground terminal of the SST.
(4) Connect a voltmeter to the SST VF monitor terminal. (Reference)
Output Voltage: $0-0.5 \mathrm{~V}$
5) Keep the engine revolution speed at 3000 rpm for about one minute to stabilize the output form of the SST VF monitor terminal.
(6) While keeping the engine revolution speed at 3000 rpm , count how many times the pointer of the voltmeter swings within 10 seconds.
8 times or more: Normal - Proceed to step (18) 0.7 times: Proceed to step (7)

NOTE:

- There are cases where the measurement can not be conducted with a tester having a low reaction speed.
- Therefore, use a tester having a high reaction speed.
(7) Instailation of SST
(1) Disconnect the ground cable terminal from the negative terminal of the battery.

(2) Remove the front floor side cover. (under the heater unit.)

(3) Connect the following SST between the ECU and the engine wire.
SST: 09842-87706-000

NOTE:

- Before the SST is installed, be sure to perform continuity test and short between the SST terminals.
(4) Reconnect the ground cable terminal to the negative $(-)$ terminal of the battery.
(8) Start and warm up the engine completely.
(9) Connect the voltmeter across the SST terminals (1) and (32).
(Reference)
Measuring Voltage: $0 \cdot 1.0 \mathrm{~V}$
(10) Keep the engine revolution speed at 3000 rpm for about one minute to stabilize the output form of the voltmeter.
(11) While keeping the engine revolution speed at 3000 rpm . measure the output voitage.

(12) Perform the inspection and repair, following the procedure given in the table below, according to the measurement results.

GEFOO166-00000
(13) Stop the engine.
(14) Removal of SST for ECU
(1) Disconnect the ground cable terminal from the negative (-) terminal of the battery.
(2) Remove the SST by disconnecting its connectors from the ECU and engine wire connectors.
(3) Connect the engine wire connectors to the ECU.
(4) Install the front side cover.
(5) Reconnect the ground cable terminal to the negative (-) terminal of the battery.
(15) Removal of SST for diagnosis connector
(1) Remove the SST from the diagnosis connector.
(2) Install the cap to the diagnosis connector.

Terminals	Trouble	Conditions		STD voltage
(10-(3)	No voltage changes	Ignition switch ON	When engine speed is held at 3000 rpm for two minutes after engine has been fully warmed up:	Voltage changes more than 8 times with in 10 seconds

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

Check oxygen sensor.

OK
OK
Check ECU.

IGNITION MONITOR

Terminals	Trouble	Conditions	STD voltage
(33	$4.5-5.5$ or 0	Ignition switch ON	$0.5-1.5$ (While engine is stopped)

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

- (22) - (32) 4.5-5.5V

- (22)-(22) 0 V

There is no voltage between SST terminals (27) and (3) when ignition key switch is turned ON.

Check wiring between ECU terminai (3) and igniter.

Check insulation between igniter terminal and body ground.

Refer to (37) - (23) trouble section No. 1. $\overrightarrow{B A D}$

Repair or replace.
OK
Check ECU.

- (38)- (32)

DISTRIBUTOR

Terminal	Trouble	Conditions	STD voltage
(22) - (3)	No voltage	Ignition switch ON	$0.5-1.5$
(21) - (23	No voltage	Ignition switch ON	$0.5-1.5$

GEFO0174-99999
If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

- (20)-(21)
[1] There is no AC voltage between SST terminats (24) and (21) when

jPEED SENSOR

Terminal	Trouble	Conditions		STD voltage
(9)-(3)	No voltage changes	Ignition switch ON	When vehicle is moved slowly:	0 to $4.5-5.5$

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

STARTER SWITCH

Terminai	Trouble	Conditions	STD voitage
(11)-(3)	No voitage	rgnition switch ST position	6.15 .5

If the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

Check battery, fusible link, ignition switch, shift position switch and starter.

AUTOMATIC TRANSMISSION CONTROL SYSTEM

Terminal	Trouble	Condition		STD voltage
(7) - (3)	No voltage	Ignition switch is turned ON		4.5-5.5
(28) - 38	No specified voltage	Ignition switch is turned ON	When the shift position is P range	Less than 3
			When the shift position is other range	Approx. Battery voltage
(24) -	No specified voltage	Ignition switch is turned ON	When the shift position is N range	Less than 3
			When the shift position is other range	Approx. Battery voltage
(25) - (3)	No specified voltage	Ignition switch is turned ON	Coolant temperature below $32^{\circ} \mathrm{C}$	Less than 1.5
			Coolant temperature above $45^{\circ} \mathrm{C}$	4.5 - 5.5
(29) - 36	No voltage	Ignition switch is turned ON		4.5-5.5
(50) - 36	No specified voltage	Ignition switch is turned ON	Throttle valve is fully closed	$0.3-0.9$
			Throttle valve is fully opened	2.9-3.5

the SST (09842-87706-000) has not been installed yet, install the SST, referring to the section under Preparation of Trouble-Shooting" at page EF-22.

- (23) - (32)
[1] There is no specified voltage between SST terminal (23) - (3) when ignition switch is turned on at P range shifted.
[2] Check that there is voltage between SST terminal (3) or (39 and body ground when ignition switch is turned on.

Check shift position switch (Refer to the 4AT section).
OK
Check wiring between ECU and shift position switch.
OK

Check ECU.

- (24) - (32)
[1] There is no specified voltage between SST terminal (24) - (1) when ignition switch is turned on at N range shifted.
\{2] Check that there is voltage between SST terminal 3 or 3 and body

(7)-(32)
[1] There is no voltage between SST terminal (7) - (32) when the vehicle is moving at constant speed.
[2] Check that there is voltage between SST terminat (33) or (34) and body ground when ignition switch is turned on.

Refer to (37 - (3) trouble section.

Check the wiring and connection between EFI ECU terminal (7) and 4AT ECU terminal

- (25) - (32)
[1] There is no specified voltage between SST terminal (7) - (3) when the ignition switch is turned ON.
[2] Check there is voltage between SST terminal (3) or (3) and body ground.

Check there is voltage between SST terminal (19) - (13) when the ignition switch is turned ON.

- (26) - 56

[1] There is no voltage between SST terminal (29) - when the ignition switch is turned ON .
[2] Check there is voltage between SST terminal (3) or 3) and body ground when the ignition switch is turned ON.

- (57)-(56)
[1] There is no specified voltage between terminais (17) - (3) when the ignition switch is turned $O N$.
[2] Check there is voltage between SST terminals (3) or 3 and body

IR CONDITIONER SWITCH

Terminals	Trouble	Conditions		STD voftage
(19) - (22)	No voltage	When engine is idting	Air conditioner switch ON	$10 \cdot 15.5$
(14) - (45)	No specified voltage	Ignition switch ON	Throttle vatve fully closed	0
			Throttle valve opened	$4.5-5.5$

GEF00187.99999
If the SST (09842-87706-000) has not been installed yet. install the SST, referring to the section under "Preparation of Trouble-shooting" at page EF-22.

- (10) - (32)
[1] There is no voltage at SST terminals (13) and (32) when air conditioner is operated.
[2] Check that there is voltage between SST terminal (11) and body ground.

- (44) - (47)
[1] There is no voltage between SST terminals (4) and (17) when ignition switch is turned ON. (Throttle valve opened)
[2] Check that there is voltage between SST terminal (37) or (34) and (33).

Check throttle position sensor.

OK
NO
Refer to (3) - (3) trouble section No. 1.

Check ECU.

FUEL SYSTEM

The fuel system consists of the following components given below:
(1) Fuel tank
(2) Fuel pump
(3) Fuel line
(4) Fuel filter
(5) injectors
(6) Pressure regulator

WAFNING:

- When working on the fuel system, never smoke nor allow any open flame to be brought near the working site:

GEF00190-00000
Fuel system wiring diagram

GEF00191-99999

IN-VEHIICLE INSPECTION

Check of fuel pump operation

1. Connect the SST to the diagnosis connector.
2. Connect the SST fuel pump terminal to the ground terminal. SST: 09991-87703-000

3. Check of fuel flowing sound.
(1) Turn on the ignition switch.
(2) Check to see if you can hear fuel flowing sound around the pressure regulator.
(3) If you can hear no fuel flowing sound, check the following parts. Repair them, as required.

- Fusible links
- Fuses
- Main relay
- Circuit opening relay
- Fuel pump
- Wiring and wiring connections

GEF00194-99999

Check of fuel pressure

1. Ensure that the battery voltage is 12 volts or more.
2. Disconnect the ground cable terminal from the negative (-) terminal of the battery.
3. Place a suitable container or cioth, etc. under the fuel filter.
4. Loosen the union bolt gradually.

CAUTION:

- Release the inner pressure of the fuel tank by removing the fuel filler cap in advance.
- The fuel pressure at the inside of the fuel line is approximately $250 \mathrm{kPa}\left(2.55 \mathrm{kgf} / \mathrm{cm}^{2}\right.$) higher than the atmospheric pressure. Hence, be sure to gradually loosen the union bolt so as to prevent fuel from splashing.
- Since the fuel will flow out, be certain to place a suitable container or cloth, etc. under the fuel filter so that no fuel

GEF00197-99999

6. Reconnect the ground cable terminal to the negative (-) terminai of the battery.

7. Connection of SST
(1) Remove the cap on the diagnosis connector.
(2) Connect the SST to the diagnosis connector.
(3) Connect the SST fuel pump terminal to the ground terminal.
SST: 09991-87703-000
8. Turn ON the ignition switch.

9. Check to see if the fuel pressure conforms to the specified pressure.

Specified Fuel Pressure:
$245-255 \mathrm{kPa}\left(2.50-2.60 \mathrm{~kg} / \mathrm{cm}^{2}\right)$

Turn OFF the ignition switch. After three minutes, check to see if the fuel pressure is the following specified.

Specified Fuel Pressure: $177 \mathrm{kPa}\left(1.8 \mathrm{kgf} / \mathrm{cm}^{2}\right)$

11. Removal of SST
(1) Turn OFF the ignition key switch.
(2) Disconnect the ground cable terminal from the negative terminal (-) of the battery.
(3) Loosen the fuel filter union bolt gradually.
(4) Remove the SST (fuel pressure gauge).
(5) install the fuel hose No. 1 to the fuel filter by means of the union bolt with a new gasket interposed.
Tightening Torque: $34.3-44.1 \mathrm{~N} \cdot \mathrm{~m}(3.5-4.5 \mathrm{kgf}-\mathrm{m})$

(6) Remove the SST from the diagnosis connector. SST: 09991-87703-000
(7) Attach the cap on the diagnosis connector.
(8) Reconnect the ground cable terminal to the negative (-) terminal of the battery.

12. Check of fuel leakage

Start the engine. Check to see if any fuel leakage is present.
Repair any defective part if the fuel leakage exists.

1. . . atere that the battery voltage is 12 volts or more.
2. Disconnect the ground cable terminal from the negative $(-)$ terminal of the battery.
3. Place a suitable container or cloth, etc. under the pressure regulator.
4. Disconnect the fuel return hose connected to the pressure regulator.
CAUTION:

- Since the fuel will flow out, be certain to place a suitable. container or cloth, etc. under the pressure regulator so that no fuel may get to the alternator.
- Release the inner pressure of the fuel tank by removing the fuel filler cap in advance.

5. Connect a suitable fuel hose (about 2 meter long) to the pressure reguiator.
REFERENCE:

- This fuel hose is included in the SST (09268-87702000).

6. Insert one end of the fuel hose in a measuring cylinder.

7. Detach the diagnosis connector cap.

, Connect the SST to the diagnosis connector. Connect the SST fuel pump terminal to the ground terminal. SST: 09991-87703-000
8. Connect the ground cable terminal to the negative $(-)$ terminal of the battery.
9. Turn ON the ignition switch for 10 seconds. Then, turn OFF the switch.

10. Measure the amount of fuel collected in the measuring cylinder.

Specified Amount of Fuel: 220 cc or more
If the fuel amount is less than the specified amount, check the fuel filter.
\because Disconnect the ground cable terminal from the negative (-) terminal of the battery.
13. Remove the SST from the diagnosis connector.
14. Attach the cap on the diagnosis connector.

Inspection of pressure regulator

1. Using the following SSTs, connect the pressure regulator, as indicated in the figure.

SSTs: 09268-87701-000 09268-87702-000 09283-87703-000

NOTE:

- When connecting the pressure regulator, install a new gasket to the union bolt connection and a new O-ring to
 the O-ring seal section. Also, attach hose bands to the hose connections.

GEF00215-99999
2. Connect the ground cable terminal to the negative $(-)$ terminal of the battery.
3. Connection of SST
(1) Detach the cap from the diagnosis connector.
(2) Connect the SST to the diagnosis connector.
(3) Connect the fuet pump terminal with the ground terminal.
SST: 09991-87703-000
4. Turn $O N$ the ignition switch.

6. Turn OFF the ignition switch. After a lapse of three minutes. check to see if the fuel pressure is the specified pressure or more.

Specified Fuel Pressure: $177 \mathrm{kPa}\left(1.8 \mathrm{kgf} / \mathrm{cm}^{2}\right)$ or more

If the fuel pressure fails to conform to the specification, again periorm the operations described in the step 13 afterward.
7. Connect a suitable hose to the vacuum hose pipe of the pressure regulator. Connect a MityVac to the other end of the hose.
8. Turn ON the ignition switch.
9. While observing the fuel pressure, apply a negative pressure, using the MityVac. At this time, ensure that the fuel

- pressure drops corresponding to the applied negative pressure.
Replace the pressure regulator if the fuel pressure will not decrease.

INJECTORS

Check of injector operation

1. Using a sound scope, check to see if each injector emits an operating sound when the engine is being started or cranked.
2. If a sound scope is not available, apply a screwdriver or the like to the injector and check to see if you can feel an operating vibration.
If the injector emits no operating sound or emits an abnormal sound, check the wiring, wiring connector or injector.

Measurement of resistance of injector

1. Disconnect the injector connector of the engine wire.

2. Measure the resistance between the terminals of each injector.

Specified Resistance: 11-17 Ω
If the resistance between the terminals is not within the specification, replace the injector.
3. Connect the injector connector of the engine wire to the injector.

-Inspection of injector

1. Using the following SSTs, connect the injector, as indicated in the figure. Insert the injector in the measuring cylinder.

SST:
(1) 09268-87701-000
(2) $09283-87703-000$
(3) 09268-87702-000
(4) 09842-30070-000

NOTE:

- Install a new gasket to the union boit connection.
- Install a new O-ring to the O-ring seal section.
- Attach the hose bands to the rubber hose connections.
- Attach a suitable vinyl hose to the tip-end of the injector so as to prevent fuel from splashing.
- Remove the injector grommet. Check to see if the injector grommet exhibits any damage.

2. Remove the diagnosis connector cap.
3. Connect the SST to the diagnosis connector.

SST: 09991-87703-000
4. Connect the fuel pump terminal of the check connector to the ground terminal.

NOTE:

- Conduct the measurement two or three times for each injector.
- Before the injector is puiled out, make certain to turn OFF the ignition key.
- When removing the injector, use a suitable cloth or the like so as to prevent fuel from splashing.
- Prior to the test, perform air bleeding for the fuel hose.

If the amount of fuel fails to conform to the specification, replace the injector.
9. Leakage check

With the SST (09842-30070-000) in not energized state, turn ON the ignition key switch. Check any fuel leakage from the injector nozzle.

Fuel Leakage: Less than one drop of fuel per minute
If the leakage exceeds the specified value, replace the injector.
NOTE:

- Prior to the test, remove the vinyl hose that was attached

10. Turn OFF the ignition key.
11. Disconnect the ground cable terminal from the negative (-) terminal of the battery.
12. Disconnect the SST.

NOTE:

- Care must be exercised as to fuel splashing and fuel flowing.

FUEL TANK AND LINE

COMPONENTS

PRECAUTIONS

1. Always use a new gasket and hose band (clip) when replacing the fuel tank or components.
2. Each part should be tightened securely to the specified torque.
'ARNING:
-Always keep fre away from the working site.

INSPECTION OF FUEL LINES AND CONNECTIONS

1. Connect the foliowing SST to the diagnosis connector. Short the fue! pump terminal to the ground terminal.

SST: 09991-87703-000

AIR INDUCTION SYSTEM THROTTLE BODY

(M/T)

(A/T)

IN-VEHICLE INSPECTION

Check of throttle body

1. Ensure that the throttle linkage operates smoothly.

Replace the throttle body if the throttle lever fails to operate smoothly.
2. Check the throttle position sensor.
3. Check the throttle positioner.

SST (Special Service Tools)

Shape	Part No. and name	Purpose	Femarks
	$09283-87703-000$ Pressure regulator adopter	* Inspection of injectors - Inspection of pressure regulator * Inspection of fuel pressure	Used in combination with 09268-87702-000
	$09268-87702-000$ Injection measuring tool set	* Inspection of injectors * Inspection of pressure regulator - Inspection of fuel pressure	Used in combination with 09283-87703-000
	$09268-87701-000$ Efl fuel pressure gauge	Inspection of fuel pressure	
	$09842-30070-000$ Efl inspection wire	Inspection of fuel injectors	
	$09842-87706-000$ EFC-II computer check sub harness	Inspection of computer input/output voitage	
	09991-87703-000 Engine control system inspection sub harness	* Shorting terminal T * Actuating fuel pump	
	$09991-87604-000$ Tacho pulse pulse pick-up wire	Measurement of engine speed	

[Reference]

Liquid Gasket

Nomenclature	Application	Part number
Three Bond 1104	Camshaft bearing cap and cytinder head cover gasket section (arched section), etc.	$999-04808-09-005$
Three Bond 1377B	Spark plug tube, heater outiet pipe and heater union	$999-04808-$ U9-004
Three Bond 1207C	Oil pan, rear oil seal retainer and oil pump	$999-6313-6323-00$
Three Bond 1324	Flywheel bolt	$999-04808-U 9-006$

DAIHATSU $\mathbf{G 2 0 0}$

Automatic Transmission

SPECIFICATIONS AT- 3
FUNCTION OF E.C.U AT- 41. LOCATION OF ELECTRONIC PARTSWHERE ARE USEDAT- 7
2. SYSTEM COMPONENTS AT- 8
3. FLOW OF HYDRAULIC CONTROL ANDELECTRICAL SYSTEMAT- 8
4. WIRING DIAGRAM AT- 9
5. TEST RUNNING BY MANUAL SHIFT AT-10
PRELIMINARY CHECK AT-11
A/T E.C.U UNIT CHECK AT-15
PRE-INSPECTION FOR ATT E.C.U AT-18
LECTRONIC PARTS INSPECTION THROUGH SST (09842-87501-000) AT-20
KEY INTERLOCK WITH SHIFT LOCKWIRING DIAGRAM (ONLY FORAUSTRALIAN SPECIFICATION)AT-27
HYDRAULIC CONTROL SYSTEM AT-29
AT-30
TESTING
AT-37
GEAR SHIFT POINTS TABLEAT-39
AT-40
ON VEHICLE REPAIR AT- 43
REMOVAL AND INSTALLATION OF AUTOMATIC TRANSMISSION AT- 48
TORQUE CONVERTER AT- 56
COMPONENTS (PART 1) AT- 68
COMPONENTS (PART 2) AT- 69
COMPONENTS (PART 3) AT- 70
REMOVAL AT- 73
OIL PUMP COMPONENT AT- 79
FORWARD CLUTCH (C1) COMPONENTS AT- 81
OVERDRIVE (CO) \& COAST (C3) CLUTCHES AT- 85
FRONT AND REAR PLANETARY RING GEAR AT- 90
REVERSE CLUTCH AT- 96
COUNTER DRIVEN GEAR AT-101
VALVE BODY AT-104
DIFFERENTIAL AT-109
TRANSAXLE HOUSING AT-113
SST AT-124
SERVICE SPECIFICATION AT-127
TIGHTENING TORQUE AT-128

The Automatic Transmission is a 4-speed electrical controlled transmission with lock-up mechanism ar mainly composed of the torque converter with lock-up clutch, newly developed 4 -speed planetary gear unt, the hydraulic control system and the electric control system.
The 4-speed automatic Transmission has following features;

- The E.C.U controls the operation of the clutches and brakes based on the shift pattern for each driving mode such as AUTO, POWER and EASY.
- When shifting the transmission, the engine torque is controlled and the hydraulic pressure in the transmission is controlled to reduce transmission shift shock
- The E.C.U constantly monitors each electronic parts when malfunction in the system has occurred, the E.C.U warns it and display the section of malfunction by trouble code through easy lamp.
- When shifting to R-range with exceeding certain vehicle speed, the E.C.U sends signal to the shift solenoid to inhibit reverse.

＇PECIFICATIONS

ftem			Specifications
Torque converter	Type		Three－element，one－stage，two－phase type （with lock－up mechanism）
	Stall torque ratio／Stall revolution speed		2．1／2500 r．p．m（for HC－E）． $2.1 / 2400$ r．p．m（for HC－C）
	One－way clutch		Sprag type
Transmission type	Type		Four forward speeds，one reverse gear，planetary gear type
	Control element		Wet type multiple clutch 4 seis
			Band type brake 1 set
			Wet type multiple brake 1 set
			One－way clutch 2 pieces
	Gear ratio		1st：2．807．2nd：1．479，3rd 1000．4th（O／D）： 0.735. Reverse： 2.769
	Reduction gear ratio		Counter gear： 1.019 （54／53）．Differential gear： 3.782 （87／23）
	Speeciometer		Number of drive gear teeth： 27 ．Numper of driven gear teeth： 24
	Oil purp		Internal gear type
	Fluid to be used		ATF DEXRON＂II
	Fitid capacty（L）Full，（Drain and Refill）		APPROX：Transaxle 5.7 （32）
	Coolirg retroo		Water－cooled（radiator built－in ：ype）
Control system	Gea．st＇t control method		Electronic hydraulic pressure control method
	Autometic gear shift		Four forward speeds．full automatic shift
	Manua contro pattern	Vehicle side	In line six position：P－R N $-\mathrm{D} \cdot 2 \cdot \mathrm{~L}$（with overdrive）

GAT00400－00000
－A lavel identifying 4－speed A．T is affixed on the upper surface of the transaxle case．Also，aiphanumeric letters which indicate the manufacturing date and year are stamped on the plate．

Manufacturing date and year
E．g：92AX－12345 or 92MX－12501

FUNCTION OF E.C.U

1. SHIFT SCHEDULE

In accordance with the vehicle speed and the throttle opening degrees, the E.C.U sends signal to the s^{n} : solenoid No. 1 and No. 2 which operate the shift valves.
The E.C.U programmed different shift pattern for each driving mode such as AUTO-ECONOMY, POWER ary EASY.

2. LOCK-UP SCHEDULE

Lock-up schedule is also controlled by electric signal from the E.C.U in accordance with the vehicle speed and the throttle opening degrees. The lock-up control solenoid modulates the on and off of the lock-up pressure.
Under the following condition, the operation of lock-up clutch will be cease.

- Driving in Faile safe program.
- When the water temperature is below specification and brake light switch on.
- When the idle switch on (ie: Accelerator pedal is iree).

3. THROTTLE PRESSURE CONTROL

In accordance with the throttle opening degree and sht: gear, the throttle pressure is controlled by E.C.

4. NEUTRAL TO REVERSE LINE PRESSURE CONTROL

The E.C.U sends signal to pressure control solenoid to reduce line pressure for reduction of shift shock when R-range is selected.

5. N-D SQUAT CONTROL

When the transmission is shifted from N to D , the squat control which temporarily shifts to second gear operate to reduce shifting shock and squatting of the vehicle.
The squat control operates only when following conditions exist;

- Brake light switch on (ie: Depress the brake pedal)
- 0% throttle opening (ie: Release the accelerator pedal)
- Transmission is shifted from N to $\mathrm{D}, 2$ and L range
- Vehicle speed is under $7 \mathrm{~km} / \mathrm{h}$

6. N-D, N-R E/G TORQUE REDUCTION (Only for equipped with HC-E engine)

When the transmission is shifted to D (or $2, L$) from N (or P, R) or to R from other range, the E.C.U sends signal to engine E.C.U to reduce its torque to prevent harsh engagement.

7. REVERSE INHIBIT

In R range and exceeding certain vehicle speed more than $7 \mathrm{~km} / \mathrm{h}$, the E.C.U sends signal to shift solenoid No. 2 (it will be turn on) and inhibits reverse.
When following condition exist, the reverse inhibit system will be released.

- Under $5 \mathrm{~km} / \mathrm{h}$ vehicle speed
- Other shift position is detected

8. AIR CONDITIONING CUT OPERATION (Only for equipped with HC-C engine)

To reduce of engine load during the vehicle running (ie: A/C switch $O N$), AC system temporarily (3 sec) turn off in accordance with the throttle opening degree.

9. OVER DRIVE (OD) CUT OPERATION

When one of following conditions exist, OD gear does not engage.

- Water temperature is below specification when the engine E.C.U sends signal
- OD cut switch off

10. DRIVING MODE SELECTION

The shift schedule of transmission is programmed following three different pattern;
AUTO
Automatically switch over between Power and Economy
POWER
Sporty driving
EASY : To make easily take off on slippery road
(Economy) : Economical driving

10-1. AUTO MODE

In accordance with throttle opening and its a time. Power pattern or Economy pattern is automatically selected.
(a) The Power pattern is selected when the changing speed of throttle opening is greater than preset value.
(b) The Economy pattern is selected when following condition exist;

- The period of throttle opening which is below specification is longer than preset value.
- Turning off of ignition switch.
- Shifting to P or N range.

10-2. POWER MODE/ECONOMY MODE

These modes can be selected by actuating the pattern select mode switch.
It can be switched off by actuating the pattern select mode switch again.

10-3. EASY MODE

This special driving mode is used on slippery surface road to make moving-off easily. (In the 2nd range, the transmission constantly shift from the 2nd gear in the 2nd range.)

3 EASY select mode can be switched off by selecting the EASY or Power select mode switch again.

11. EMERGENCY MÓDE

When the E.C.U detects that a malfunction has occurred in one of the following sensors or signals, atl of the following four (4) solenoids will be turned off.
However, the vehicle can be driven by manual shifting to the nearest workshop. (The 3rd and 4th lockup can not take place in the D range.)

- Shift solenoids No. 1 and No. 2
- Vehicle speed sensor*
- Pressure control solenoid
- Throttle signal
"NOTE:
- In this case, the pressure control solenoid will not be turned off.

Table of gear availability at each selector position with emergency mode

Selector lever position	Rerarge	D-iarge	2-renge	1-range
Gear	Peverse	4:-	3 c	1st

12. SHIFT POSITION SWITCH (P, R, N, D, 2, L)

When the E.C.U detects that a maifunction ras coc reed in the switches, the E.C.U controls the operation of the following patterns.

Patterns

(A): The vehicle can be moved in the D range ority! alt switches are turned OFF.
(B): The E.C.U decides the control of the following shf: eange patterns if more than two switches are turned ON .

$$
N>R>L>2>D
$$

13. INHIBITION OF SHIFTING TO LOW-SPEED GEAR DURING HIGH-SPEED RUNNING

To prevent the engine from over-revolving, if downst'rg is manually made from the D range or the 2 nd range to the L range, the vehicle will continue to run ir $r e s e c o r d$ gear, until the vehicle speed drops below $54 \mathrm{~km} / \mathrm{h}$ (i.e. the shift solenoids No. 1 and No. 2 are ON:

14. INHIBITION OF SHIFTING FROM D RANGE TO 2 RANGE

To prevent the engine from over-revolving, if downshiting is mar ualiy made to the 2 nd range during running at a high speed in the D range, the vehicle will continue to toin ine third gear, intil the vehicle spert drops below $97 \mathrm{~km} / \mathrm{h}$ (i.e the shift solenoid No. 2 is ON .).

2. SYSTEM COMPONENTS

(1) Throttle sensor
(2) Water temperature switch
(3) Vehicle speed sensor
(4) C1 cylinder revolution sensor
(5) Lock-up solenoid switch
(6) Shift solenoicis No. 1 and No. 2
(7) Pressure cor:- solenoid
(8) Shía postion
(9) Throt'e sensor
(10) Water temperature switch
(ii) Torque control
(12) Diagnosis
(13) Brake switch

3. FLOW OF HYDRAULIC CONTROL AND ELECTRICAL SYSTEM

WIRING DIAGRAM

\star marked are equipped with only HC-C engine
A : Back-up lamp
B : Meter indicator
C: Shift position switch
: Shift pattern switch
: Water temperature switch
Throttle sensor
G : Water temperature signal
: Throttle sensor signal
: Overdrive cut switch
J : Brake switch
K : Test terminal
L : Back-up current
M : Battery
N: EFI E.C.U
O: Vehicle speed sensor
P : C1 cylinder revolution sensor
Q : Shift solenoid No 1
R - Shift solenoid No. 2
S : Pressure controi solenoid
: Lock-up control solenoid
U : Warning (Easy) lamp
: Diagnosis connector
W: Overdrive off lamp
x : Torque control signal
Y : Air-con cut signal

5. TEST RUNNING BY MANUAL SHIFT

Perform the running test by manual shifting with the subharness (SST/No.: 09842-87501-000) discon :ec:so as to check to see if the trouble phenomenon has been caused by the hydraulic system or elec:-:parts. Check that the shift lever position and gear correspond with the table below.

Selected position	P-range	R-range	N-range	D-range	2nd range	L-range
Gear position	Pawl lock	Reverse	Neutral	4th gear hold	3rd gear rold	1st gear ho:

NOTE:

- The vehicle will not move off in the Neutral range.
- The parking pawl locks in the Parking range.
- If the results do not conform to the specifications, proceed to perform the check as follows:

Preliminary check \downarrow	See page AT-11
Diagnosis output \downarrow	See page AT-15
Electronic parts inspection through SST (09842-87501-000)	See page AT-20
- Using a circuit tester or the like	
	See page AT-30
Road test - Upshat and duerst...t corras 	See oage AT-35
On-vehicle repair	S-a Rage AT-44
Overhaul of A/T	Spe page AT-49

'RELIMINARY CHECK

1. Check of transaxle fluid level NOTE:

- Prior to the fluid level check, be sure to run the vehicle until the engine and transaxle have reached their normal operating temperature.
(Fluid temperature: $70-80^{\circ} \mathrm{C}$ or $158-176^{\circ} \mathrm{F}$)

2. Check of engine idling speed (ie: All electrical switched off)

Specified Value: $850 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{E}$

$$
800 \pm 50 \mathrm{rpm} \text { for } \mathrm{HC}-\mathrm{C}
$$

(1) Park the vehicle on a level surface. Apply the parking brake.
(2) With the engine idling, smoothly move the shift lever all through the ranges from P to L. Finally, return the shift lever to the P range.
(3) Pull out the transaxle fluid level gauge and wipe it clean.
(4) Push it back fully into the tube.
(5) Pull it out and check that the fluid level is in the HOT range.
If the fluid levei is too low, add the fluid.
Fluid To Be Used: DEXRON ${ }^{\text {® }}$ II
Full Capacity: Approx. 5.7
Drain and Refill: Approx. 3.2ℓ

CAUTION:

- Do not overfill the fluid.

- Transaxle warming-up method

1. Warm up the engine.
2. If the vehicie runs for about 15 minutes at a speed of $60 \mathrm{~km} / \mathrm{h}$ or for about 30 minutes at a speed of $40 \mathrm{~km} / \mathrm{h}$. the temperature of the fluid inside the transaxle becomes about $80 \pm 10^{\circ} \mathrm{C}$ or $176 \pm 50^{\circ} \mathrm{F}$.

REFERENCE:

- When the engine is cold, if the engine is operated for about 35 minutes at the idling speed after the engine has started, the temperature of the fluid inside the transaxle will rise to about $60 \pm 10^{\circ} \mathrm{C}$ or $140 \pm 50^{\circ} \mathrm{F}$.

- Change of fluid level as a result of rise in fluid temperature

NOTE:

- If it is necessary to check the fluid level at a low temperature ($20-30^{\circ} \mathrm{C}$ or $68-86^{\circ} \mathrm{F}$), e.g. at the time of fiuid change, first adjust the fluid level so that it may become within the COOL level. Then, recheck the fluid level under the hot conditions.
- If the fluid level fails to reach the cool level on the fluid level gauge, be sure to check the transaxie for fluid leakage. Also, puil out the fluid level gauge and check the fluid for contamination or smell of fluid burning.

3. Check of fluid condition

If the fluid smells burning or it presents a black appearance, change the fluid.
4. Change of transaxle fluid
(1) Remove the drain plug with the gasket. Drain the fluid. NOTE:

- Never reuse the removed gasket.
) Examination of particles
Inspect the magnets and use them to collect ary steel chips. Lock carefully at the chips and particles on the magnet to anticipate what type of wear you will find in the transmission:

Steel (magnetic) ... bearing, gear and plate wear Brass (non-magnetic) ... bushing wear

5. Check of shift lever position
(1) Perform the shift lock check.
(2) Move the shift lever from the N range to each range. Ensure that the shift lever button and shift lever can be operated smoothly with a positive detent feeling at each range. Check that the position indicator functions properiy.
(3) Start the engine. Ensure that the vehicle moves forward when you move the shift lever from the N range to the D. 2 and L ranges, respectively. Make sure that the vehicle moves backward when you move the shift lever to the R range.
(4) Perform the operation check for the shift lock release button.
(5) With the ignition switch set to the ON position, move the shift lever from the P to R range and from the N to R range while depressing the brake pedal
\Rightarrow mark: Shift can be made only while shift lever button is being pushed

- mark: Shift can be made without pushing shift ever button

6. Adjustment of control cable
(1) Loosen the adjusting bolt of the manual shift lever.
(2) Pull the manual shift lever fully toward the right side A (i.e. the engine) of the vehicle.
(3) Back off the lever four notches to the Neutral position. Tighten the adjusting bolt.
Tightening Torque:
$15.7-24.0 \mathrm{~N} \cdot \mathrm{~m}(1.6-2.45 \mathrm{kgt}-\mathrm{m}, 11.6 \div 17.6 \mathrm{ft}-\mathrm{lb})$

CAUTION:

- If the adjusting bolt is tightened with the control cable pulled toward the shift outer lever side (front side of the vehicle), the positional relationship may be disturbed slightly between the shift lever side and the shift outer lever. This may cause poor engine starting, the failure of backup lamp illuminating, sudden vehicle starting or faulty gear shifting during running. Hence, make sure to conduct the adjustment, strictly following the procedure given above.

7. Adjustment of neutral start switch
(1) Align the scrible lines between neutral start basic (A) and control cable bracket (B) by loosing the iwo bolts (C).
(2) Hold in position and tighten the two bolts (C) Tightening Torque:
$9.8 \cdot 15.7 \mathrm{~N} \cdot \mathrm{~m}(1.0-1.6 \mathrm{kgf}-\mathrm{m}, 7.2 \cdot 11.6 \mathrm{ft} \cdot \mathrm{bb})$
(3) Check the continuity of the terminals in the neutral start switch (see step on 9).

GATOOO24-99999

8. Check the shift lever position (see page AT-13).
9. Inspection of neutral start switch

Using an ohmmeter. check the continuity of the terminals for each switch position shown in the able beiow.

Terminai Range	PL		N	$こ i$	26	- 7 -	$\therefore S T$
P	O-			.		-2	
R		O-				-C	
N			0			:	
D				O-		C	
2					O-	10	
L						$0+0$	
P. N (starter circuit)						!	$\bigcirc \mathrm{C}$

If the continuity does not conform to the specifications. repiace the switch.

DRIVING PATTERN

		Power mode	Auto mode		Easy mode
		Power pattern	Power patiern	Economy pattern	Easy pattern
P		Parking	\leftarrow	\leftarrow	\leftarrow
R		Reverse	\leftarrow	\leftarrow	\leftarrow
N		Neutral	\leftarrow	\leftarrow	\leftarrow
D	OID ON	$1 \rightleftarrows 2 \rightleftarrows 3 \rightleftarrows[4]$	\leftarrow	$1 \rightleftarrows 2 \rightleftarrows[3] \ddagger[4]$	$2 \rightleftarrows 3 \rightleftarrows\{4\}$
	ORD OFF	$1 \rightleftarrows 2 \rightleftarrows[3]$	\leftarrow	\leftarrow	$2 \rightleftarrows 3$
2		$1 \rightleftarrows 2(\leftarrow 3)$	\leftarrow	\leftarrow	$2(\leftarrow 3)$
L		$1(\leftarrow 2)$	\leftarrow	\leftarrow	\leftarrow
Remarks		- [\quad Lock-up operation is possible: - (): Only when low-speed gear prohibtion control is taking place during high-speed runing. - Even when the Auto mode is selected. the power pattern is selected forcibly when the water-temperature sensor signal is ON (low temperature).			

AT E.C.U UNIT ${ }^{1}$ CHECK

I. INSTRUCTIONS PRIOR TO WORK

(1) The electrical control system of the automatic transmission has a diagnosis function. Hence, if it is believed that causes for the problem lie in this electrical system, first be sure to read the diagnosis output.
Furthermore, after all problems of the electrical system have been repaired, disconnect the ground cable from the negative (-) terminal of the battery or backup fuse (B) at least for ten seconds at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$ so as to erase the memory of diagnosis results.
(2) If the problem can not be reproduced when the unit concerned is tested even if the diagnosis output indicated abnormality, it is believed that a temporary problem has occurred once in the unit concerned. Under such circumstance, it is advisable to conduct the reproduction test.
(3) Before the E.C.U connector is connected or disconnected, be certain to turn OFF the ignition key switch and disconnect the ground cable from the negative (-) terminal of the battery.
(4) When performing continuity tests or voltage measurements, connections should be made correctly to the specified terminals.
CAUTION:

- Wrong connections may damage the E.C.U or other electrical parts.
- Never drop the E.C.U or other electrical parts, nor allow any impact to be applied to them. It is not permissible to reuse those parts having subjected to impacts.

2. DIAGNOSIS FUNCTION

The automatic transmission has a function whereby the selfdiagnosis can be conducted for a part of the electrical system.
(1) When abrormality occurs in those diagnosis applicable units (e.g. sensors or signals), the E.C.U memorizes the unit concerned in the form of a code number.
NOTE:

- When abnormality is taking place in any sensor or signal, it will be no longer possible for the vehicle to continue its normal running. Hence, most likely the driver will
 notice such abnormality.
(2) Connect the SST (09991-87705-000) to the diagnosis connector (A).
NOTE:
- The SST (09991-87705-000) above can be used for the inspection of EFI engines and ABS-equipped vehicles.
(3) Turn ON the igntion switch.
(4) Confirm the code number of the EASY lamp flashing cycle at the combination meter side.
NOTE:
- As for the code number of the $4 \mathrm{~A} T$, see page AT--16.

AT-16

3. DIAGNOSIS SIGNmL i mulะ

	Normal code unit: sec	Trouble code unit: sec
For driver		
Test (T) terminal earth		

NOTE:

- In cases where two or more abnormal items exist. the warning (EASY) lamp indicates the code numbers through flashing in the sequence of code number, starting from a smaller one.

Trouble code table

Code	Trouble mode	2000	Troubie mode
(13)	C1 cylinder revolution sensor malfunctioning	25	-up Cerr Sol. open circuit
(2)	Shift sol. No. 1 open circuit	$\underline{3}$	L-up Ctri. Sol short circuit
(2)	Shilt sol No. 1 short circuit	4	Triotie sensor malfunctionng
(23)	Shift sol. No. 2 open circuit	43	Water temp. switch maifunctioning
(2)	Shift sol. No. 2 short circuit	63	Vehicle speed sensor malfunctionirig
(29)	Press. Ctrl. Sod open circuit	38	Shift position s/w malfunctioning
(23)	Press. Ctrl. Sol short circuit	(1i)	Torque control signal malfunctioning

н．TERMINAL DISTRIBUTION TABLE

（1）ATECUsce

（2：5．e－erness（ser No：09842－87501－000）side

（GA1） 1 ）03F． 99999
N．C：Corres：es $:=$ grourd（earth）inside the E．C．U．

SST terminal：is		SST terminal No．	
1	こ	22	Air conditioner amplifier for $\mathrm{HC}-\mathrm{C}$
2		23	Water temperature switch for HC－E
3		23	Water temperature switch signal for HC－C
4	－erce speeo sensor（－）	24	C1 cylinder revolution sensor（ + ）
5	ここ．：3 5ximo	25	Vehicle speed sensor（ t ）
6	$\because 2$	26	Overdrive switch
\square	$\because \therefore \therefore$－a＂ce	27	Easy switch
8	－－	28	2 d d range
9	ニ－ミ¢	29	D range
0	$\because \therefore \therefore \therefore$－eforio power earth	30	Sensors and s gnais earth
11		31	Auxiliary earin for lvo 30
12	$\because こ$	32	R range
13	\therefore	33	NC
14		34	N．C
15	Sencs stse－gouc	35	Easy（warnegj lamp
16		36	Sensor system power supply
17	Bratesin：${ }^{\prime \prime}$	37	Throttle sensor shield
18	Overue ONOF amb	38	Test terminal
19	Pressu＊a contol sclenoid（ + ）	39	N．C
20	Votage ior backup	40	Lock－up control solenoid
2 L	Sta scienaj No．i	41	IG key switch
22	Torque conto fr ：H－E	42	Shift solenoid No． 2

AT－18

PRE－INSPECTIOiv run нi c．u．u

If any difficulty is encountered in judging whether a problem is occurring at the engine side or at the $;$ side．check the following electrical system．
1．Check the battery voltage（12V）．
2．Check the fusible link and fuses for blown－out．
3．Ensure that the earth cable is securely connected
4．Preliminary check（See pages AT－11 through AT－14）
5．Connect the subharness（SSTiNo．：09842－87501－000）between the A／T E．C．U and the wiring harness．
6．Measure the voltage of the following termina．s．
（1）I．G switch OFF ．．．． 20 to $10(-)$ Battery vorage for backup
（2）I．G switch ON ．．．． 41 to 10 i－$B E$ aters sotage
7．When the IG swith is ：umきょ O．． Specified Value for HC－E and HC－C：

A：Throttle opening degree

SST ：－＞．．．－e \because	A	
	\because	100\％
14 to $15(-)$	ここ：こご	More than 3.2 V
36 to $30(-)$		

8．Measure the voltage of the water temperatie re：he following conditions． Specified Value：

SST terminal／No．	Function	Cors：こ．	Voltage	Water temperature	$\left({ }^{\circ} \mathrm{C}\right)$
23 to 30 （－）	ON	When 13 switch is turned 3 ：	Less than 1.5	Below 35 for $\mathrm{HC}-\mathrm{C}$	
				Below 32 for HC－E	
	OFF	During erig＂ warmirg－w	4.5 to 5.5	Above 45 for rtC－C	
				Above 48 for $\mathrm{HC}-\mathrm{E}$	

9．Torque control output signal（only for $\mathrm{HC}-\mathrm{E}$ ）
（1）Lift up the vehicle．
（2）Set the timing light（for movement of the timing one we crank pulley）
（3）Provide an oscilloscope．
（4）After the engine has warmed up，measure the ane of the torque control between the foltorirn terminais．
SST terminai／No．

22 to $30(\%)$$\quad$\begin{tabular}{l}
Specified voltage

More than 5 V

$\longrightarrow \quad$ NO \quad

Check the wiring hariess for short circuit of

enratic earth：the actually－measured valte $\cdot 5$

iess than the specification．
\end{tabular}

（5）Insert the input pulse code of the oscilloscope to the SST terminal／No． 22.
（6）Depress the brake pedal and select the shift lever to the D range．
（7）Release your foot from the accelerator pedai and brake pedal．
(8) Depress the accelerator pedal slightly.
(9) Ensure that the wave characteristics of the torque control signal momentarily appear as shown in the right illustration. Also, ensure that the shift shock should be felt instantly after the wave characteristics of the torque control signal disappear.

NOTE:

- The A section varies in accordance with the throttle opening degree.

(10) Be sure to cont mat the timing mark on the crankshaft pulley wil avick.y retard to around the T.D.C. from the B.T.D.C. A) when the wave characteristics of the torque contro. s gia: are midicated on the oscilloscope.
(11) The siming mark moves in an advance direction over several s:ages (B) when the accelerator pedal is reeasea
NOTE:
- When the short circuit or erratic earth has occurred on the wiring harness, the wave characteristics of the torque control signal are displayed on the oscilloscope as shown in the right figure (i.e. like ripples A).
- If the malfunction has occurred in the ATT E.C.U itself, the timing mark will be held at the advance position when the accelerator pedal is depressed or released and the
 voltage varies in accordance with the throttle opening angle.
. Air conditoner switch (only for vehicles equipped with HC-C engine)
(i) Measure te voltage between the SST terminal No. 22 and the earth while idling. Specified Value: More than 11 V
(2) When the air conditioner switch is turned ON, measure the voltage between the SST terminals No. 22 and No. 30 (-)
Specified Value: Less than 2.5 V
(3) Measure the voltage between the SST terminais No. 22 and No. 30 (-). Also, measure the time required for the air conditioner to be switched from ON to OFF in accordance with the throttle opening
degree, using a stopwatch.
Specified Values:
Time: 3 sec .
A/C ON: When voltage is more than 11V
A/C OFF: When voltage is less than 2.5 V

NOTE:

- While the air conditioner cut signal is being outputted, if an air conditioner cut output signal is newly detected from the AT E.C.U, the cut signal will be retained for three seconds.

ELECTRONIC PARTS INSPECTION THROUGH SST (09842-87501-000)

$\mathrm{T}=$ Trouble code, $\mathrm{A}=$ Approximately

1. $\quad \mathbf{T}=13$ (C1 cylinder revolution sensor):

Detecting the transmission input revolution from the forward clutch drum and send it to ATT E.C.U.

GATOOH1-0020
2. $\mathbf{T}=\mathbf{2 1}$ (Shift solenoid No. 1): Short circuit or Battery irregularly earth

(1)	I.G OFF	SST terminal/No.	Specified value	$\xrightarrow[\substack{\text { (More than } \\ 13 \pm 2 \Omega)}]{\text { No }}$	- Poor connection of solen connector - Short circuit on the wirin or solenoid
		21 to 30 (-)	$13 \pm 2 \Omega$		
			Yes		
(2)	I.G ON	21 to $30(-)$	10 V	$\xrightarrow[(\text { More than } 10 \mathrm{~V})]{\mathrm{No}}$	- Short circuit on the wiring between battery and so
			Y Yes		
(3)	While idling	21 to 30 (-)	OV	$\frac{\text { No }}{\text { (More than OV) }}$	- A/T E.C.U malfunction
			Yes		
			NORMAL		

T = 22 (Shift solenoid No. 1): Irregularly earth

4. $\mathbf{T}=\mathbf{2 3}$ (Shift solenoid No. 2): Short circuit or Battery irregularly earth

5. $\mathbf{T}=\mathbf{2 4}$ (Shift solenoid No. 2): Irregularly earth

(1) I.G OFF

SST terminal/No.
42 to 10 (-)
(2) Vehicle running in D or 2nd range 42 to $10(-)$ Specified value

7. $\mathbf{T}=\mathbf{2 6}$ (Pressure control solenoid): Battery short

GATOO4O7-0NCOM

8. $\mathbf{T}=\mathbf{2 8}$ (Lock-up solenoid): Short circuit or Battery short

		SST terminal/No.	Specified value		
(1)	I.G OFF	40 to $16(-)$	$13 \pm 2 \Omega$	$\frac{\text { No }}{\text { (More than }}$	- Poor connection of solenoid connector
			Yes	$13 \pm 2 \Omega)$	- Short circuit on the wiring harness or solenoid
(2)	While idling	40 to $16(-)$	Less than 10 V	$\frac{\text { No }}{\text { (More than 10V) }}$	- Short circuit on the wiring harness between battery and solenoid
			Yes		
(3)	While idle	40 to 16 (-)	OV	$\frac{\text { No }}{\text { (More than 0V) }}$	- A/T E.C.U malfunction
			Yes (Steady)		
			NORMAL		

T = 29 (Lock-up solenoid): Irregularly earth

(1)	I.G OFF	SST terminal/No.	Specified value		
		40 to $10(-)$	OS2	$\frac{\text { No }}{\text { (More than } 0 \text { os })}$	- Irregularly earth on the wiring harness - Solenoid malfunction
			Yes		
(2)	While vehicle running with lock-up (3L or 4L)	40 to 10 (-)	More than 10 V Yes	$\frac{\text { No }}{\text { (Less than 10V) }}$	- A/t E.C.U malfunction
			NORMAL		

10. $\mathbf{T}=\mathbf{5 2}$ (Vehicle speed sensor):

Detecting the revolution of counter driven gear and send it to A/T E.C.U
SST terminal/No. Specified value

11. $\mathbf{T}=55$ (Shift position switch)

While the engine is idling, measure the voltage at the shift position switch from P to L range at each selecting position.

Driving pattern selection switch

(1.) Power I.GON
I.G ON When power switch ON
(2) Easy E.GON
1.G ON

When easy
switch ON

SST terminal/No. Specified value

5 to $10(-) \quad$ More than 10 V

5 to $10(-)$

27 to $10(-)$
$271010(-)$
Less than 5 V \qquad - Shorl circuit or Irregularly earth on the wiring harness
Yes
OV

13. Over drive Lock-out switch
(1) I.GON
(2) IGON

When OO switct 26 to $30(-)$
ON and OFF
26 to ground (Input voltage)

SST terminail/No. Specified value
Less than 5 V

Yes

\qquad - Short circuit or liregularly earth on the wiring harness

- Switch malfunction $\binom{$ If the measure value is greater }{ than 0.5 V against the input voltage }

GATOOS 13.00000
14. Brake switch

15. Test terminal
(1) $1, G O N$
(2) I.G ON SST terminal/No.
38 to ground (Input voltage)

Specified value

UNIT INSPECTION

1. Measure the coil resistance of the vehicle speed sensor (A) and C 1 cylinder revolution sensor (B), using an ohmmeter. Specified Value:
(A) 648 to 792Ω at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$
(B) 387 to 473Ω at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$
2. Measure the coil resistance of the following parts, using an ohmmeter.
(1) Shift solenoid No. 1 (4) and No. 2 (8) to body ground
(2) Lock-up control solenoid (3) to body ground
(3) Pressure control solenoid $(2,6)$

Specified Value:
(1) and (2) $13 \pm 2 \Omega$ at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$
(3) $\quad 3.5 \pm 0.2 \Omega$ at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$

3. Measure the continuity of the brake switch, when depressing the brake pedal.
4. Measure the continuity of the pattern select switch, using an ohmmeter.
Power: Continuity exist between the terminal of 1-5.
Easy: Continuity exist between the terminal of 4-5.
5. Measure the continuity of the overdrive switch while O / D switch ON between the terminal of 3-6.
6. Ensure that the illumination lamp should be goes-ON when connecting the battery voltage between the terminal of 2-5.

KEY INTERLOCK wvIH SHIFI LOCK WIRING DIAGRAM （ONLY FOR AUSTRALIAN SPECIFICATION）

1．SHIFT LOCK ELECTRIC CONTROL UNIT

 as shown in the figure below．

NOTE：

－To prevent the battery from being discharged，when the IG key switch is at the＂ACC＂postion，the energizing to the key interlock solenoid will be shut off about 60 minutes after electric continuity is formed．

- Stop lamp switch
- Prange detecting switch ($\mathrm{P}, \mathrm{P}_{1}$)
- P range detecting switch (P, P_{p})
- Shift lock solenoid
- Key lock solenoid
- Ignition switch

Energizing conditions ... Each solenoid will be energized oniy wher a^{-}cond tions given below are satisfied.

	Key interiock scenoid	Shift lock solenoid
lgnition switch	$A C C$	ON
Shift position	Shift lever is placed in Prarge and shift lever button is being pusnes. o^{-}s...t ever is placed in ranges other than P. P range detecting sw: $5=-P_{i}$ On	P range P range detecting switch $P-P_{1} O N$
Stop lamp switch	-	ON

GAT00049-99999

2. SHIFT LOCK E.C.U INPUT/OUTPUT SPECIFICATION

Terminal	Condtor	Specified value
I.G to earth	I.G switch ON	Battery voltage
STP to earth	Depress the brake pedat	
	Release the brake pedal	OV
KLS (+) to earth	I. G switch $A C C$ and P range	OV
	Shilt lever button is pushed when P range or other than P range	7.5 to 11.5 V (Approx: 1 sec) 6 to $9 V$ (After that)
$A C C$ to earth	I.G switch ACC	Battery voltage
SLS (-) to earth	-	Continuity exist
SLS (+) to earth	1. G switch ON, Depress the brake pedal with P range	8.5 to 13.5 V (Approx: 20 sec) 5.5 to 9.5 V (After that)
	I. G switch $O N$. Release the brake pedal with P range or other than P range	OV
P. to earth	I.G switch ACC with P range	Battery voltage
	Shift lever bution is pushed with P range or other than P range	OV
P 10 earth	- - - -	Continuity exist
P, to earth	I. G switch ON with P range	OV
	Shift lever button is pushed with P range or other than P range	

Disconnect the connector of the solenoid. Ensure that the clicking sound emits from the solenoid when connecting the battery voltage between the terminal of SLS (+) to SLS (-) for shift solenoid and KLS (+) to KLS (-) for key interlock.
2. Measure the continuity of following terminal of the P range detecting switch.
3. Shift lock and key interlock solenoids inspection.

Shift lever	Shift lever bution	Terminals		
		P	P_{1}	P_{3}
Prange	Release	O	O	
	Push	O	O	
		0		0

HYDRAULIC CONTROL SYSTEM

Based on the hydraulic pressure created by the oil pump, the hydraulic contro: system governs the hydraulic pressure acting on the torque converter, clutches and brakes in accordance with the vehicle condition.
There are four solenoid valves on the valve body.

- The No. 1 and No. 2 shift solenoid valves are turned on and off by signals from the E.C.U to operate the shift valves, and change the gear shift position.
- The pressure controf solenoid valve is operated by signals from the E.C.U to control the hydraulic pressure for clutches and brakes to reduce shift shock.
- The lock-up control solenoid valve is operated by signals from the E.C.U to engage or disengage the lock-up clutch of the torque converter, and also control the hydraulic pressure for the lock-up clutch engagement.

TESTING

1. STALL TEST

The purpose of this test is to check the overall performance of the automatic transmission and engine c : measuring the maximum engine speeds in the D and R ranges.

CAUTION: (Failure to observe this caution may cause the stall speed figure not to be corrected.)
(1) Perform the stall test at the normal fluid operating temperature ($70-80^{\circ} \mathrm{C}$ or $158-176^{\circ} \mathrm{F}$).
(2) Do not conduct this test continuously for more than five seconds.
(3) Wait at least one minute before the switching is made from the D range to the R range.
(4) Be sure to turn OFF the air conditioner and over drive during the test.

Measurement of stall speed

(1) Place chocks at the four wheels.
(2) Install an engine tachometer.
(3) Fully apply the parking brake.
(4) Keep depressing the brake pedal firmly by your left foot during the test.
(5) Start the engine and check the idle speed ($850 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{E}, 800 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{C}$).
(6) Move the shift lever to the D or R range. Depress the accelerator pedal fully by your right foot. Quickly read the highest engine rpm at this time.
Stall Speed: $2180 \pm 150 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{E}, 2500 \pm 150 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{C}$
(7) Perform the same test in the R range.

CAUTION

- Never move the shift lever to the D or R range while the engine is rotating at a high speed in the N range. (Failure to observe this caution may cause the discs to be burnt.)

Evaluation

(1) If the engine speed is the same for both ranges but lower than specified value:

- Engine output probably insufficient
- Stator one-way clutch malfunctioning
(2) If the stall speed at the D range is higher than specified value:
- Line pressure too low
- Forward clutch slipping
(3) if the stall speed in the R range is higher than specified value:
- Line pressure too low
- Reverse clutch slipping
- First \& reverse brake slipping
(4) If the stall speed in the R and D ranges is higher than specified value:
- Line pressure too low

2. TIME LAG TEST ${ }^{1}$.

Then the shift lever is shifted while the engine is idling, there will be a certain time lapse or lag before you can feel a shock. This time lag can be used for checking those conditions of the forward clutch, the reverse clutch, coast clutch and the first \& reverse brake.

CAUTION: (Failure to observe this caution may cause the time lag figure not to be corrected.)
(1) Perform the time lag test at the normal fluid operating temperature ($70-80^{\circ} \mathrm{C}$ or $158-176^{\circ} \mathrm{F}$).
(2) Be sure to allow one minute intervals between tests.
(3) Conduct the measurement three times and take the average value.

Measurement of time lag

(1) Place chocks at the four wheels.
(2) Fully apply the parking brake.
(3) Start the engine and check the idle speed ($850 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{E}, 800 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{C}$).
(4) Move the shift lever from the N to the D range. Using a stopwatch, measure the time required from the lever shifting to the time when you feel a shock.
Time Lag for A: Not to Exceed 0.7 second
(5) In the same manner. measure the time lag when shifting is made from the N to the R range.

Time Lag for B: Not to Exceed 1.2 seconds

Evaluation

(1) If the N -to-D time lag is longer than the specified value:

- Line pressure too low
- Forward clutch slipping
- Coast clutch and one way clutch No. 0 and No. 1 malfunctioning
(2) If the N-to- R time lag is longer than the specified value:
- Line pressure too low
- Reverse clutch slipping
- First \& reverse brake slipping

3. LOCATION OF TEST PLUGS

$\mathrm{A}, \mathrm{a}\left(\mathrm{P}_{\text {.LUE }}\right)$: Lubrication pressure
$\mathrm{B}\left(\mathrm{P}_{\mathrm{L}}\right)$: Line pressure
$\mathrm{C}\left(\mathrm{P}_{\mathrm{C} 3}\right)$: Coast clutch pressure
$D\left(P_{C_{1}}\right)$: Forward clutch pressure
$\mathrm{E}\left(\mathrm{P}_{\mathrm{co}}\right)$: Overdrive clutch pressure
$F\left(\mathrm{P}_{\mathrm{Bi}}\right) \quad:$ 2nd \& 4th brake releasing pressure
$\mathrm{G}\left(\mathrm{P}_{\mathrm{B}}\right) \quad:$ 2nd \& 4th brake applying pressure
$H\left(P_{\mathrm{TH}}\right)$: Throttle pressure

HYDRAULIC TEST

ィ. Measurement of pressures.
(1) Warm up the transmission fluid.
(2) Remove the test plugs and install the oil pressure gauge (SST).

SST: 09992-00094-000
CAUTION:

- Perform the test at the normal fluid operating temperature (70-80 ${ }^{\circ} \mathrm{C}$ or $158-176^{\circ} \mathrm{F}$).
(3) Fuily apply the parking brake and place chocks at the four wheels.
(4) Start the engine and check the idle speed ($850 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{E}, 800 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{C}$).
(5) Move the shift lever to the D range. Depress the brake pedal firmly by your left foot. While manipulating the accelerator pedal by your right foot, measure the line pressure at the engine speeds specified in the table.
(6) Perform the test in the R range in the same way.
$\mathrm{kPa}\left(\mathrm{kg} / \mathrm{cm}^{3}\right.$. psi)

	D range		A range	
	Idling	Stall	Idling	Stall
Line	$\begin{gathered} 372 \cdot 421 \\ (3.8-4.3 .54-61) \\ \hline \end{gathered}$	$\begin{gathered} 1019 \cdot 1196 \\ (10.4-12.2 .148-173) \end{gathered}$	$\begin{gathered} 539-627 \\ (5.5-6.4 .78-91) \end{gathered}$	$\begin{gathered} 1343-1618 \\ (13.7-16.5,194-234) \end{gathered}$
Forward clutch	$\begin{gathered} 343.421 \\ (3.5-4.3,49-61) \end{gathered}$	$\begin{gathered} 1029-1196 \\ (10.5-12.2,149 \cdot 173) \end{gathered}$	-	
Coast clutch	$\begin{gathered} 343-421 \\ (3.5-4.3 .49-61) \end{gathered}$	$\begin{gathered} 382-431 \\ (3.9-4.4 .55-62) \end{gathered}$	$\begin{gathered} 382-431 \\ (3.9-4.4 .55 \cdot 62) \\ \hline \end{gathered}$	$\begin{gathered} 382 \cdot 431 \\ (3.9 \cdot 4.4 .55-62) \end{gathered}$
Throttle	$\begin{gathered} 39-63 \\ (0.4-0.65,5.6-9.2) \end{gathered}$	$\begin{gathered} 402-451 \\ (4.1-4.6,58-65) \end{gathered}$	$\begin{gathered} 39-63 \\ (0.4 \cdot 0.65,5.6-9.2) \end{gathered}$	$\begin{gathered} 402-451 \\ (4.1-4.6 .58-65) \end{gathered}$

(7) If the measured pressure does not comply with the specified values, perform the test again.

Evaluation

(1) If the measured values in the D and R ranges are higher than specified value:

- Pressure control solenoid malfunctioning
- Primary regulator valve malfunctioning
(2) If the measured values in the D and R ranges are lower than the specified value:
- Pressure control solenoid maifunctioning
- Primary regulator valve malfunctioning
- Oil pump malfunctioning
(3) If the pressure is low in the D range only:
- Fluid leakage at the D range circuit
(4) If the pressure is low in the R range only:
- Fluid leakage at the R range circuit

GAT00055-99999

5. MEASUREMENT ÓF 2ND AND 4TH BRAKE APPLYING ($P_{B_{1}}$) PRESSURE

(1) Warm up the transmission fluid
(2) Remove the test plug with O-ring installed and install the oil pressure gauge.

CAUTION:

- Perform the test at the normal fluid temperature $\left(70-80^{\circ} \mathrm{C}\right.$ or $\left.158-176^{\circ} \mathrm{F}\right)$.
(3) Fully apply the parking brake and place chocks at the four wheels.
(4) Start the engine and check the idle speed ($850 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{E}, 800 \pm 50 \mathrm{rpm}$ for $\mathrm{HC}-\mathrm{C}$).
(5) Move the shift lever to D or 2 range. Depress the brake pedal firmly by your left foot.

While manipulating and depressing the accelerator pedal slightly by your right foot until you can feei the 2nd gear in D or 2nd range.
(6) Measure the brake applying pressure after releasing the accelerator pedal.
$\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$

D range (2nd)	2nd range (2nd)
$343-421(3.5-4.3,49-61)$	More than $343(3.5 .49)$

In the same manner (ie: 3rd gear in D range), measure the overdrive clutch (P_{co}) and 2 nd and $4 \mathrm{t}^{\prime}$ brake releasing (P_{Br}) pressures.
$\mathrm{kPa}\left(\mathrm{kg} / / \mathrm{cm}^{7} . \mathrm{psi}\right)$

	D range $(3 \mathrm{rd})$
Overdrive clutch $\left(\mathrm{P}_{\mathrm{cI}}\right)$	$343-421(3.5-4.3,49-61)$
2nd and 4th releasing	$343-421(3.5-4.3,49-61)$

(7) Measure the lubrication pressure at idling condition

Specified Value: More than $78 \mathrm{kPa}\left(0.8 \mathrm{kgf} / \mathrm{cm}^{2}, 11 \mathrm{psi}\right)$ at D range

- If the line pressure is higher than specified value
- Line pressure control solenoid malfunction
- Primary regulator valve malfunction
- If the line pressure is lower than specified value
- Line pressure control solenoid malfunction
- Primary regulator valve malfunction
- Oil pump malfunction
- Fluid leakage at the oil pressure circuit

9. ROAD TEST

CAUTION:

- Perform this test at the normal fluid operating temperature ($70-80^{\circ} \mathrm{C}$ or $158-176^{\circ} \mathrm{F}$).
(1) D range test in Auto or Power pattern. Shift into D range and hold accelerator pedal constant at 50% (A) and 100% (B) throttle opening positions.
(a) Upshift operation

1-2, 2-3 and 3-4 upshifts should take place, and shift points should be conformed to the shift program (See page AT-37).
(2) Inspection of lockup mechanism
(a) Drive the vehicle in the D range at a STEADY SPEED (lockup ON) of about $85 \mathrm{~km} / \mathrm{h}(53 \mathrm{mph}$). (The lockup can be off, if the accelerator pedal is being depressed while vehicle steady speed.)
(b) Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.
If there is a sharp rise in the engine rpm, it indicates that there is no lockup.
(3) Shock and slip

In the same manner, check the shock and the slippage at 1-2, 2-3 and 3-4 upshiftings.
(4) Noise and vibration Check for abnormal noise and vibration with normal driving condition.
NOTE:

- Extreme care must be exercised during check for cause of abnormal noise and vibration. These symptoms are caused often by imbalance in the drive shaft, differential, tires, torque converter and so forth.
(5) While running in the 2nd, 3rd and 4th gear of the D range, ensure that the down shift points vehicle speed limits for the 2-1,3-2 and 4-3 conform to those indicated in the gear shift points table. (See page AT-37.)
(6) Check for abnormal shocks and slippage during down shift period.
(7) While running in the D, 2nd and L ranges, release the accelerator pedal and check the engine braking effect.

GAT00060.99999

(8) R range test

Move the shift lever to the R range. While running at the full throttle, check to see if slippage is taking place.

(9) P range test

Stop the vehicle on a gradient (more than 5\%). After moving the shift lever to the P range, release the parking brake. Then, check that the parking lock pawl prevents the vehicle from moving.

(10) 2nd range

While running in the D range (3rd gear), check the engine brake effective when down shift to 2nd gear (2nd range) from the 3rd gear in D range.
(11) Low range test

While running in the 2 nd gear of the D or 2 nd range, Check the engine brake effective when down shift to 1st gear (low range) from the 2nd gear (D or 2nd range).

GEAR SHIFT POINTS TABLE

c: Economy. P: Power, Es: Easy patterns, E: E.F.I, C: Carburetor

(A)			100\%						0\%		
			$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 4$	$4 \rightarrow 3$	$3 \rightarrow 2$	$2 \rightarrow 1$	$4 \rightarrow 3$	$3 \rightarrow 2$	$2 \rightarrow 1$
D	E_{c}	E	46-54	93-101	144-152	116-124	79.87	36-44	$16 \cdot 24$	3-11	
		C	51-59	101-109	156-164	126-134	81-89	36-44	16-24	3-11	
	P	E	52-60	106-114	156-164	141-149	91-99	39-47	16-24	3-11	
		C	56-64	108-116	164-174	136-144	91-99	41-49	16-24	3-11	
	$\mathrm{E}_{\text {s }}$	E	-	76-84	116-124	96-104	64-72	-	3-11		-
		C		76-84	116-124	96-104	64-72		3-11		-
2		E	52-60	-	-	-	93-101	-	-	93-101	3-11
	$\mathrm{E}_{\mathrm{c}} \mathrm{P}$	C	56-64				93-101	41-49		93-101	
	E_{5}		-					-			-
L		E	-	-	-	-	-	51-57	-	一	51-57
		C	-	-	-	-	99-107	50-58		99-107	50-58

Lock up speed throttle opening: 2-7\%

Lock up		ON		OFF	
Gear		3rd	$41 \mathrm{~h}(\mathrm{O} / \mathrm{D})$	3rd	4th (O/D)
E_{C}	E	$46-54$	$46-54$	$42-50$	$42-50$
	C	$56-64$	$56-64$	$51-59$	$51-59$
P	E	$66-74$	$66-74$	$61-69$	$61-69$
	C	$66-74$	$66-74$	$61-69$	$61-69$
E_{s}	E	-	$66-74$	-	$56-64$
	C	-	$66-74$	-	$66-74$

TABLE OF FAIL-SAFE FUNCTIONS

Code	Parts name	Contents of control	Releasing condition
13	C1 cylinder revolution sensor	- Emergency mode	After normal operation has been resumed, release is made when vehicle speed becomes $0 \mathrm{~km} / \mathrm{h}$. (Flashing of Easy lamp ceases when normal operation is resumed.)
$\begin{array}{r} 21,22 \\ 23,24 \\ \hline \end{array}$	Shift solenoids	- Emergency mode	After normal operation has been resumed, release is made once IG is set to OFF.
25, 26	Pressure control	- Emergency mode	After normal operation has been resumed, release is made once IG is set to OFF.
28.29	Lock-up control	- No lock-up	- After normal operation has been resumed, release is made when gear shifting is made. - After normal operation has been resumed, release is made once IG is set to OFF.
41	Throttle position sensor signal	- Emergency mode	After normal operation has been resumed, release is made when vehicle speed becomes $0 \mathrm{~km} / \mathrm{h}$. (Flashing ol Easy lamp ceases when normal operation is resumed.)
42	Water temperature sensor signal	- When water lemperature sensor signal lrom the engine is judged as OFF, switching to 4th lock-up takes place.	After normal operation has been resumed, release is made once IG is set to OFF.
52	Vehicle speed sensor	- Emergency mode	After normal operation has been resumed, release is made when vehicle speed becomes $0 \mathrm{~km} / \mathrm{h}$. (Flashing of Easy lamp ceases when normal operation is resumed.)
55	Neutral start switch	- When all switches are OFF ... Judged as 0 range - When two or more of switches are 0 N ... Judgment is made with priority given in the following order: $N>R>L>2>D$ - All other controls are executed.	Release is made when normal operation is resumed.
81	Torque control signal	- Control of engine torque reduction is prohibited during gear shifting. - Control of torque reduction is prohibited during $\mathrm{N}-$ to- D or N -to-R	Reiease is made when normal operation is resumed.

FUNCTIONS OF GEAR CHARACTERISTIC TABLE

Shift position		C1	C 2	C3	CO	B1	B2.	F1	F0
P	Parking			\bigcirc					
R	Reverse		\bigcirc	0			0		
N	Neutral			\bigcirc					
D	1st	\bigcirc		\bigcirc				\bigcirc	\bigcirc
	2nd	\bigcirc		\bigcirc		0			\bigcirc
	3 rd	\bigcirc		0	\bigcirc				\bigcirc
	4th (OD)	\bigcirc			\bigcirc	0			
2	1 st	\bigcirc		O				0	0
	2nd	\bigcirc		\bigcirc		0			\bigcirc
L	1st	\bigcirc		\bigcirc			\bigcirc	0	\bigcirc

FUNCTIONS OF EACH GEAR SHIFT CONTROL ELEMENT

Gear shilt control element	Function
Forward clutch (C1)	This clutch connects the input shaft with the rear planetary ring gear during the operation of C 3 or $\mathrm{F0}$. This clutch connects the input shaft with the front planetary ring gear during the operation of CO .
Reverse clutch (C2)	This clutch connects the input shaft with the planetary sun gear.
Coast clutch (C3)	This clutch connects the input shaft with the rear planetary ring gear during the operation of C 1 .
Overdrive clutch (CO)	This clutch connects the input shaft with the front planetary ring gear during the operation of C1.
2nd \& 4th brake (B1)	This brake locks the rotation of the planetary sun gear.
1 st \& reverse brake (B2)	This brake locks the rotation of the front planetary ring gear.
One-way clutch No. 1 (F1)	This brake locks the counterclockwise rotation of the front planetary ring gear.
One-way clulch No. 0 (F0)	This clutch connects the input shaft with the rear planetary ring gear while power is transmitted from the engine to the transmission during the operation of C1

ROUBLE SHOOTING TABLE

HYDRAULIC TROUBLE SHOOTING

ON-VEHICLE REPAIR

Condition	Parts name	Inspection
Impossible to shift or Improper shift point	Input/output speed sensor	- Check the continuity between terminals with an ohmmeter.
No engine start or erratic shift	Neutral start switch	- Adjust shift linkage. - Align swith grove with neutral basic line. - Check the continuity (exist or no) between the terminal pairs with an ohmmeter when the shift lever is positioned to each range.

TROUBLESHOOTING FOR MECHANICAL AND HYDRAULIC FAULTS

Condition	Cause of failure	Direction for remedy
Engine can not be started (or engine stall)	Selector lever linkage incorrectly adjusted	- Adjust selector lever linkage.
	Neutral start switch incorrectly installed or malfunction (include wire harness)	- Adjust Neutral start switch - Check Neutral start switch and replace.
	Valve body assembly malfunction (especially lock-up control valve)	- Check the movement of lock-up control valve or valve body assembly and replace.
Will not move off in positions D, 2 and L (or slippage)	Transmission fluid level is too low	- Check and correct transmission fluid level.
	Torque converter malfunction	- Check the operation of one-way clutch and replace Torque converter.
	Oil pump malfunction (No main pressure)	- Check oil pump and replace.
	Valve body assembly malfunction (especially Primary regulator valve)	- Replace the front valve body assembly.
	Oil strainer blocked	- Clean or replace oil strainer.
	Forward clutch (C1) malfunction	- Check clutch plates, seal rings, piston O-rings, gasket and replace.
	Coast clutch (C3) and O.W.C. No. O (FO) malfunction	- Check the operation of O.W.C. (C3) clutch plates, seal rings piston O-rings, gasket and replace.
	O.W.C. No. 1 (F1) malfunction	- Check the operation of the O.W.C. (F1) and replace.
Will not move off in position "R"	Transmission fluid is too low	- Check and correct Transmission fluid level.
	Torque converter delective	- Check the operation of O.W.C. and replace T/C.
	Oil pump malfunction	- Check oil pump and replace.
	Valve body assembly malfunction (especially Primary regulator valve, 1-2 shift valve)	- Replace the front valve body assembly.
	Reverse clutch (C2) malfunçtion	- Check clutch plates seal rings, piston O -rings, and gasket, and replace.
	1st \& reverse brake (82) malfunction	- Check plates, piston O-rings, gasket and replace.
	Shift solenoid No. 1 malfunction	- Check solenoid No. 1 and O-ring, and replace.
No upshift 1-2 gear in position "D" "2"	2nd \& 4th brake (81) malfunction	- Check band, piston O-rings and replace.
	Valve body assembly malfunction (especially 1-2 shift valve)	- Replace the front valve body assembly.
	Shift solenoid No. 2 malfunction	- Check shift solenoid No. 2 and replace.
No upshift 2-3 gear in position "D"	Overdrive clutch (CO) malfunction	- Check clutch plates, seal rings, piston O-rings and replace.
	Valve body assembly malfunction (especially $2-3$ shift valve)	- Replace the front valve body assembly.
	Shift solenoid No. 1 malfunction	- Check shift solenoid No. 1 and replace.

Condition	Cause of failure	Direction for remedy
No lock-up	Lock-up control solenoid malfunction	- Check lock-up control solenoid and replace.
	Valve body assembly malfunction (especially lock-up control solenoid. $1-2$ shift valve, lock-up control valve, lock-up modulator valve and secondary regulator valve)	- Check valve body assembly and replace (especia: lock-up control solenoid, front valve body asserriby lock-up control valve, and secondary regulator valse
	Torque converter malfunction	- Check Torque converter and replace.
Poor acceleration	Some solenoid malfunction	- Check solenoids and replace (shift solenoid lock-up control solenoid).
	Some shift valve malfunction (especially. $1-2,2-3$ and $3-4$ shift valves)	- Replace the front valve body assembly.

ON VEHICLE REPAIR

Replacement of oil seal at differential side
(1) Remove the oil seal, using the following SST. SST: 09308-00010-000

NOTE:

- Never reuse the removed oil seal.

GAT00076-99999

NOTE:

- Never reuse the removed oil seal.

(5) With the following SST used, install the new oil seal (A) to the sleeve subassembly speedometer shaft.
SST: 09921-00010-000
(6) Align the groove section (A) of gear speedometer driven (B) and sleeve subassembly speedometer shaft (C).
(7) Insert the gear speedometer driven to the sleeve subassembly speedometer.
(8) Lock the groove section (A) with the clip.

GATOOOB0-

- When inserting the oil cooler hoses at the transaxle side, ensure that the clip should be installed in line with the end of yellow paint (A) on the hose.
- Ensure that the protrusion paint section of the (A) position faces toward the upper side.
- When inserting the oil cooler hose at radiator side, ensure that the clip should be installed in line with the end of white (B) on the hose.
- Ensure that the protrusion white section of the (B) position faces toward the upper side.

4. Solenoid for shift No. 1, No. 2 and pressure control
(1) Pull out the breather hose subassembly front axle.
(2) Remove the 12 bolts of the transaxle side cover. NOTE:

- Never reuse the removed two bolts (A).
(3) Disconnect the coupler of the following solenoids.
- Shift solenoid No. 1 (A) and No. 2 (B)
- Pressure control (C)
- Lock up control (D)

inspection

(a) Measure the coil resistance of the shift solenoid No. 1, No. 2 and lock up control between terminal and body earth.
Specified Value: 11-15 (at $20^{\circ} \mathrm{C}$)

GA100086-90939

(b) Measure the coil resistance of the pressure control solenoid between each terminals.
Specified Value: $3.3-3.7 \Omega$ (at $20^{\circ} \mathrm{C}$)
(4) Connect the couplers of the following solenoids.

- Shift solenoid No. 1 (A) and No. 2 (B)
- Pressure control (C)
- Lock up control (D)

NOTE:

- Ensure that the each connector should be connected correctly. (A) -White, (B)-Blue, and (C)—Yellow
- There is an interchargeability between the shift solenoid No. 1 and No. 2 for installation.
(5) Remove any sealer gasket and clean the contacting surface between transaxie side cover and transaxle case.
NOTE:
- No oil get to contact surface.
(6) Apply sealer gasket to the transaxle side cover.

Sealer gasket.
Three Bond 1281 (Three Bond made)
(7) Tighten the transaxle side cover with the 12 bolts.

Tightening Torque: $13.7-20.6 \mathrm{~N} \cdot \mathrm{~m}$
($1.4-2.1 \mathrm{kgf}-\mathrm{m}, 10.1-15.2 \mathrm{ft}-\mathrm{lb})$
NOTE:

- Be sure to use the new two bolts (A) as right figure illustration.
(8) Insert the breather hose subassembly front axle to the transaxle side cover.
CAUTION:
- Ensure that the breather hose should be inserted to the side cover less than $2 \mathrm{~mm}(\mathrm{~A})$.
Failure to observe this caution may result the breathing out of ATF.

Sensors

(1) Remove the battery carrier and battery.
(2) Remove the vehicle speed sensor and Cy cylinder revolution sensor by removing a bolt.
(3) Measure the coil resistance of the sensor between each terminals.
Specified Sensor Valve
Vehicle Speed: 648-792 (at $20^{\circ} \mathrm{C}$)
C1 Cylinder Revolution: $387-473 \Omega\left(\right.$ at $20^{\circ} \mathrm{C}$)

GAT00095.99909
6. Valve body assembly (see page AT-104 through AT-108.)
7. Neutral start switch assembly
8. Vehicle speed and C1 cylinder revolution sensors

FUNCTION OF SOLENOID

		Solenoids			Remarks (See page)
		Shift No. 1	Shift No. 2	Lock-up control	
	P	\bigcirc	\times	\times	
R	VL7 km/h	\bigcirc	\times	\times	
	$\mathrm{V}>7 \mathrm{~km} / \mathrm{h}$	\times	\bigcirc	\times	Reverse inhibit (AT-5)
	Reverse	\times	\times	\times	Fail safe (AT-38)
N		\bigcirc	\times	\times	
D	1st	\bigcirc	\times	\times	
	2nd	\bigcirc	\bigcirc	\times	
	3 rd	\times	\bigcirc	(0)	
	4th (O/D)	\times	\times	(0)	OID Cut (AT-5)
2	1st	\bigcirc	\times	\times	
	2nd	\bigcirc	\bigcirc	\times	
	3 rd	\times	\bigcirc	\times	AT-6 step 13 and 14
	(3rd)	\times	\times	\times	Fail safe (AT-38)
L	1st	\bigcirc	\times	\times	
	2nd	\bigcirc	\bigcirc	\times	AT-6 step 13 and 14
	3 rd	\times	\bigcirc	\times	AT-6 step 13 and 14
	(1st)	\times	\times	\times	Fail safe (AT-38)

REMOVAL AND INSTALLATION OF AUTOMATIC TRANSMISSION

Prior to work of removal

1. Drain the fuel pressure in the following manner.
(1) Removal of circuit opening relay.
(2) Start the engine and keep the idling condition until engine has stopped.
(3) Installation of circuit opening relay.

REMOVAL

1. Remove the hood assembly by removing the two bolts on both left and right sides.
2. Install the front fender covers to the front fender so that the surface of fender is free from the scratch or damage.
3. Disconnect the couplers, pipe and tubes.
4. Remove the radiator cap.

NOTE:

- Do not remove the radiator cap, if the water temperature is in the hot condition.

5. Jack up the vehicle.
6. Disconnect the power steering hose.
7. Receive the power steering fluid with the suitable container (A) in advance or the like by cranking the engine.

CAUTION:

- Never cranking the engine more than 10 sec , failure to observe this caution may causes seizure of vane pump.

8. Remove the power steering pressure hose.
9. Disconnect the ground cable from the negative terminal of the battery.
10. Remove the battery and battery carrier.
11. Remove the air cleaner assembly.
12. Remove the front bumper assembly.
13. Remove the engine under cover left and right.
14. Remove the ground cable.
15. Drain the coolant (ethylene gricoal based on anti freeze solution) by removing the drain plug.

GAT00096-9999:

GAFO0097-99999

17. Disconnect the connector of the radiator fan.
18. Remove the radiator reserver hose (A).
19. Remove the radiator inlet and outlet hose.

20. Remove the inlet and outlet hose for automatic transmission.
NOTE:

- Never reuse the removed inlet and outlet hose.

22. Disconnect the engine harness at the vehicle interior side and pull out them to the engine compartment room.
23. Remove the clamp and connectors.
24. Remove the control cable assembly by removing a bolt on the lever transmission control shaft.
25. Disconnect the coupler of the ground cable.
26. Remove the fuse block assembly from the body and disconnect the connector.
27. Remove the speedometer cable.
28. Remove the two heater hose.
29. Remove the fuel pipe air hose No. $1(A)$ and fuel hose (B).
30. Slacken the lock nut (A) of the air conditioner idle pulley.
31. Remove the drive belt by loosing the adjusting bolt (B) for counterclockwise. (if equipped with air-conditioner)
32. Suspend the compressor- assembly with magnet switch using the small rope or the like.
NOTE:

- Do not separate the pipe from the engine assembly.

Remove the engine oil filter.
Remove the pulley and accessary assembly.
34. Support the engine with automatic transmission, using the chain block or the like.
35. Remove the engine front mounting from the engine lower member assembly.
36. Remove the engine mounting rear stay.
37. Remove the engine mounting rear insulator (A).
38. Remove the engine mounting rear No. 1 bracket (B).
39. Lower the front stabilizer by removing the bolts and nuts. NOTE:

- Never reuse the removed nuts.

40. Remove the exhaust front pipe assembly by removing the lower arm bracket connecting.
NOTE:

- Never reuse the removed exhaust front pipe gasket.

41. Remove the suspension lower arm subassembly on bolt left and right sides.
NOTE:

- Never reuse the removed bolts.

42. Slacken the three nuts of the shock absorber in front support.

GATOO111.99999

AT-52

43. Remove the clip and nut.
44. Separate the tie rod end, using the following SST.

SST: 09611-87701-000
NOTE:

- Never reuse the removed clip.

45. Remove the right side drive shaft, using the following SST. SST: 09648-87201-000

NOTE:

- As for the removal of left side drive shaft, it is recommended to use suitable bar.

46. Remove the engine mounting left bracket by removing the three bolts.

47. Remove the engine mounting upper left bracket by removing the two bolts.
48. Remove the engine mounting left insulator.
49. Remove the engine mounting right insulator subassembly.
50. Suspend the engine with automatic transmission, using the chain block or the like.
51. Remove them from the vehicle.

Remove the exhaust manifold stay by removing the two bolts.
53. Remove the stiffener power train with the cover clutch under installed by removing the seven bolts.
54. Remove the cover clutch under from the stiffener power train by femoving the two bolts.
55. Rerrove the s:artor assembly by removing the two boits.

AT-54

56. Remove the six bolts of the gear subassembly drive plate \& ring tightened with spacer front drive plate.

57. Remove the air cleaner bracket with surge tank No. 3 by removing the three bolts.
58. Remove the automatic transmission assembly by removing the five bolts.

Remove the assembly torque converter from the transaxle case.
NOTE:

- Since the automatic transmission fluid inside the torque converter flows out onto the floor when removing the torque converter, be sure to place a container in advance to recelve the automatic transmission fluid.

60. Disconnect the clamp of the neutral start switch.
61. Remove the control cable bracket by removing the two bolts.
62. Remove the following oil cooler tubes and hoses.
(1) Inlet hose (A)
(2) Inlet tube (B)
(3) Outlet hose (C)
(4) Outlet tube (D)

Replacement of oil seal

Remove the oil seal from the oil pump, using the following SST (A).

SST: 09308-10010-000

NOTE:

- Never reuse the removed oil seal.

2. Apply lithium base multi purpose grease to the lip section.
3. Drive a new oil seal into the oil pump, using the following SST with a plastic hammer.

SST: 09308-20010-000

G4TC0130-99999

TORQUE CONVEmicm

1. Measure the gear subassembly drive plate \& ring runout, using a dial indicator.

Specified Value: 0.25 mm
NOTE:

- If the runout exceeds than 0.25 mm or ring gear is damaged, replace the drive plate and tighten them.
Tightening Torque: $78.4-98.0 \mathrm{~N} \cdot \mathrm{~m}$
($8.0-10.0 \mathrm{kgf}-\mathrm{m}, 57.6-72.0 \mathrm{ft}-\mathrm{lb}$)

(3) Measure the assembly torque converter sleeve runout again.
NOTE:
- If the sleeve runout exceeds than 0.30 mm , replace them as an assembly.

INSTALLATION

1. Make sure that the straight pin is inserted into the hole (A) in the illustration. Also, when replacing with a new transmission assembly, be sure to insert a straight pin positively.

CAUTION:

- If the $A T$ should be installed to the engine with the straight pin not fitted positively in place, it may result in problems, such as seizure of oil pump bush on the torque converter sleeve, abnormal noise, cracks of the oil pump drive gear and cracks of torque converter sleeve. Therefore, be sure to check the straight pin positively in the figure.

2. Insert the breather hose subassembly front axle.

NOTE:

- If the breather hose not inserted with correctly, it may result in breathing out of ATF. Therefore, be sure to check the (A) section (ie: less than 2 mm) in the right figure.

3. Connect the flare nut to the union with the new O-ring in place and tighten then.

Tightening Torque: $29.4-39.2 \mathrm{~N} \cdot \mathrm{~m}$

$$
(3.0-4.0 \mathrm{kgf}-\mathrm{m}, 21.7-28.9 \mathrm{ft}-\mathrm{Ib})
$$

CAUTION:

- Be sure to secure the union when tightening the flare nut. Failure to observe this caution may result in breakage of the threaded portion of the transaxle case cracks.

4. Tighten the clamp with a bolt (A).

Tightening Torque: $6.9-9.8 \mathrm{~N} \cdot \mathrm{~m}$

$$
(0.7-1.0 \mathrm{kgf}-\mathrm{m}, 6.9-7.2 \mathrm{ft}-\mathrm{lb})
$$

5. Clean the installation section of the new oil cooler hose with the white gasoline.
6. Install the new oil cooler hoses to the tubes.

NOTE:

- When inserting the oil cooler hoses at the transaxle side, ensure that the clip should be installed in line with the end of yellow paint (A) on the hoses.
- Ensure that the protrusion section of the yellow paint position faces toward the upper side.

GATOO130.99999

(A)

- Ensure that the hoses should be installed to the second spool of the radiator pipe.
For easily identification, there are identification marks on both radiator and transaxle sides on the hoses.
And also, overlength of the inlet hose is 38 mm longer than outlet hose.

7. Tighten the control cable bracket with the two bolts.

Tightening Torque: $14.7-21.5 \mathrm{~N} \cdot \mathrm{~m}$
(1.5 - $2.2 \mathrm{kgf}-\mathrm{m}, 10.8 \cdot 15.9 \mathrm{ft}-\mathrm{lb}$)
8. Connect the clamp of the neutral start switch.
9. Ensure that the assembly torque converter is fitted positively with the automatic transmission.

Specified Dimension (A): More than 16.4 mm

CAUTION:

- If the A / T installed to the engine with the assembly torque converter is not fitted positively in place (ie: Dimension (A) is smaller than 16.4 mm), it may result in problems, such as seizure of the oil pump bush on the torque converter sleeve, abnormal noise, cracks of the oil pump drive gear and cracks of the torque converter sleeve.
Therefore, be sure to measure the dimension (A) in the right figure.

10. Tighten the automatic transmission to the engine with the five bolts.

Tightening Torque: $49.0-68.6 \mathrm{~N} \cdot \mathrm{~m}$
($5.0-7.0 \mathrm{kgf-m}, 36.2-50.6 \mathrm{ft}-\mathrm{bb}$)

NOTE:

- Be very careful not to drop the assembly torque converter white jointing the automatic transmission with engine.

CAUTION:

- Never make a gap between transaxle and engine. Failure to observe this caution may result in problems, such as seizure of the oil pump bush on the torque converter sleeve, abnormal noise, cracks of the oil pump drive gear and cracks of the torque converter sleeve. Therefore, be sure to securely confirm the gap.

11. Tighten the surge tank stay and air cleaner bracket with the three boit.
12. With a white boit used, temporarily tighten the assembly torque converter with gear subassembly drive plate \& ring and spacer drive plate front.
13. Tighten them over several stages with the other five bolts.

Tightening Torque: $22.6-31.4 \mathrm{~N} \cdot \mathrm{~m}$
($2.3-3.3 \mathrm{kgf}-\mathrm{m}, 16.6-23.9 \mathrm{ft}-1 \mathrm{~b}$)

CAUTION:

- If longer bolts other than the designated one are used, these bolts peel off the clutch lining inside the torque converter. Then, the peeled clutch lining (paper) may be lodged at the hydraulic passage, thus causing malfunctioning of the transaxle.
- If shorter bolts are used, these bolts can not withstand the rotating torque, leading to rupture at the threaded portion of the bolt.
Nominal Length (A) of Specified Bolt: $10.5{ }_{+0}^{+0.5} \mathrm{~mm}$

AT-60

- If the specified bolt breaks off or it is inserted slantly, the threaded hole can not be corrected by means of a tap. Therefore, replace a new torque converter and a bolt (A) specified above as a set.

NOTE:

- Prevent the ring gear from rotating by means of a screwdriver.

14. Tighten the startor assembly with the two bolts.

Tightening Torque: $36.75 \pm 7.35 \mathrm{~N} \cdot \mathrm{~m}$
($3.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, 27 \pm 5.4 \mathrm{ft}-\mathrm{lb}$)
15. Tighten the cover clutch under to the stiffener power train with the two bolts.

Tightening Torque: $6.9 \cdot 9.8 \mathrm{~N} \cdot \mathrm{~m}$
(0.7-1.0 kgf-m, $5.1-7.2 \mathrm{ft}-\mathrm{lb})$
16. Tighten the stiffener power train with the seven bolts. Tightening Torque:
(A): 29.4-44.1 N.m
(3.0-4.5 kgf-m, 21.7-32.5 ft-lb)
(B): $\quad 14.7-21.6 \mathrm{~N} \cdot \mathrm{~m}$
($1.5-2.2 \mathrm{kgf}-\mathrm{m}, 10.8-15.9 \mathrm{ft}-\mathrm{lb})$

GATO0149.99999

Tighten the exhaust manifold stay with the two bolts.
18. While suspending the engine together with automatic transmission with the chain block or the like, install them to the engine compartment room.
19. Slacken the three bolts of the engine lower mounting member subassembly.
20. Temporarily tighten the engine mounting rear No. 1 bracket (A) and engine mounting rear insulator.
21. Tighten the engine mounting rear No. 1 bracket (A), rear insulator (B) and mounting rear stay (C).

Tightening Torque:
(A): $\quad 58.8 \pm 9.8 \mathrm{~N} \cdot \mathrm{~m}$
$(6.0 \pm 1.0 \mathrm{kgt}-\mathrm{m}, 43.4 \pm 7.2 \mathrm{ft}-\mathrm{bb})$
(B): $\quad 36.75 \pm 7.35 \mathrm{~N} \cdot \mathrm{~m}$
($3.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, 27 \pm 5.4 \mathrm{ft}-\mathrm{lb}$)
(C) $\times(\mathrm{A}): \quad 103.3 \pm 11.27 \mathrm{~N} \cdot \mathrm{~m}$
$(10.55 \pm 3.15 \mathrm{kgf}-\mathrm{m}$, $75.96 \pm 22.68 \mathrm{ft}-\mathrm{lb})$

GATO0153.99999

22. Tighten the engine mounting rear insulator with the two bolts.

Tightening Torque: $\quad 37.3 \pm 11.27 \mathrm{~N} \cdot \mathrm{~m}$ $(3.8 \pm 1.15 \mathrm{kgf}-\mathrm{m}$, $27.5 \pm 8.28 \mathrm{ft}-\mathrm{lb})$

NOTE:

- Ensure that the protrusion of the engine mounting rear insulator (A) should be inserted into the engine lower mounting member subassembly.

23. Tighten the engine mounting front insulator to the engine lower mounting member subassembly with the two bolts.

Tightening Torque: $37.3 \pm 11.27 \mathrm{~N} \cdot \mathrm{~m}$
$(3.8 \pm 1.15 \mathrm{kgf-m}$,
$27.5 \pm 8.28 \mathrm{ft}-\mathrm{lb})^{\prime}$
24. Tighten the engine lower member subassembly with the three bolts.

Tightening Torque: $68.6 \pm 20.6 \mathrm{~N} \cdot \mathrm{~m}$
$(7.0 \pm 2.1 \mathrm{kgf}-\mathrm{m}$,
$50.6 \pm 14.5 \mathrm{ft} \cdot \mathrm{lb})$
25. Temporarily tighten the engine mounting right insulator subassembly.
26. Tighten the engine mounting left insulator (A) and engine mounting upper left bracket (B).

Tightening Torque:
(A): $36.8 \pm 7.4 \mathrm{~N} \cdot \mathrm{~m}$
($3.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, 27 \pm 5.4 \mathrm{ft}-\mathrm{lb}$)
(B): $\quad 46.8 \pm 7.4 \mathrm{~N} \cdot \mathrm{~m}$
$(4.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, 34.3 \pm 5.4 \mathrm{ft} \mathrm{lb})$
27. Tighten the engine mounting left bracket with the four bolts.

Tightening Torque: $\quad 36.8 \pm 7.4 \mathrm{~N} \cdot \mathrm{~m}$

$$
\begin{aligned}
& (3.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, \\
& 27 \pm 5.4 \mathrm{ft}-\mathrm{lb})
\end{aligned}
$$

28. Tighten the engine mounting rear insulator to the engine mounting left bracket.

Tightening Torque: $\quad 103.0 \pm 30.9 \mathrm{~N} \cdot \mathrm{~m}$
$(10.55 \pm 3.15 \mathrm{kgf}-\mathrm{m}$,
$75.96 \pm 22.68 \mathrm{ft}-\mathrm{lb})$

Tighten the engine mounting right insulator subassembly with the boit (A) and nut (B).

Tightening Torque:
(A): $\quad 36.8 \pm 7.4 \mathrm{~N} \cdot \mathrm{~m}$
($3.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, 27 \pm 5.4 \mathrm{ft}-\mathrm{lb}$)
(B): $\quad 18.7 \pm 4.0 \mathrm{~N} \cdot \mathrm{~m}$
($1.9 \pm 0.4 \mathrm{kgf}-\mathrm{m}, 13.7 \pm 2.9 \mathrm{ft}-\mathrm{lb})$
30. With the new bolts used, tighten the suspension lower arm subassembly on both left and right sides.

Tightening Torque: $206.0 \pm 39.3 \mathrm{~N} \cdot \mathrm{~m}$
$(21.0 \pm 4.0 \mathrm{kgf}-\mathrm{m}$, $152 \pm 28.9 \mathrm{ft}-\mathrm{lb})$
31. Install tie rod end to the steering knuckle.
32. Tighten the steering knuckle with the new castle nut.

Tightening Torque: $36.75 \pm 7.4 \mathrm{~N} \cdot \mathrm{~m}$
($3.75 \pm 0.75 \mathrm{kgf}-\mathrm{m}, 27 \pm 5.4 \mathrm{ft}-\mathrm{lb}$)
33. Install the new clip (A).

NOTE:

- When installing the new clip, be sure to align the hole section between castle nut and steering knuckle if the hole section is not in the same position, tighten the new castle nut within the 60 degree (ie: Minimum over tightening).

34. With the new nut used, tighten the suspension support on both left and right sides.

Tightening Torque: $\quad 35.3 \pm 6.9 \mathrm{~N} \cdot \mathrm{~m}$
$(3.6 \pm 0.7 \mathrm{kgf}-\mathrm{m}, 26.0 \pm 5.1 \mathrm{ft}-\mathrm{lb})$

35. With the new gasket used, tighten the exhaust front pipe assembly.

Tightening Torque: $52.0 \pm 10.4 \mathrm{~N} \cdot \mathrm{~m}$
$(5.3 \pm 1.06 \mathrm{kgf}-\mathrm{m}, 38.3 \pm 7.6 \mathrm{ft}-\mathrm{lb})$
36. Tighten the lower arm bracket connecting rod with the four bolts.

Tightening Torque: $65.7 \pm 26.5 \mathrm{~N} \cdot \mathrm{~m}$
($6.7 \pm 2.7 \mathrm{kgf}-\mathrm{m}, 48.5 \pm 19.5 \mathrm{ft}-\mathrm{lb}$)
37. With the bolts and new nuts used, tighten the front stabilizer.

Tightening Torque: $12.8 \pm 3.0 \mathrm{~N} \cdot \mathrm{~m}$
$(1.3 \pm 0.3 \mathrm{kgf}-\mathrm{m}, 9.4 \pm 2.2 \mathrm{ft}-\mathrm{bb})$
38. With the bolts and new nuts used, tighten the front stabilizer.

Tightening Torque: $12.8 \pm 3.0 \mathrm{~N} \cdot \mathrm{~m}$
$(1.3 \pm 0.3 \mathrm{kgf-m}, 9.4 \pm 2.2 \mathrm{ft}-\mathrm{lb})$
39. Tighten the engine mounting front to the engine lower member assembly.

Tightening Torque: $\quad 103.0 \pm 30.9 \mathrm{~N} \cdot \mathrm{~m}$
($10.55 \pm 3.15 \mathrm{kgf}-\mathrm{m}$,
$75.9 \pm 22.6 \mathrm{ft}-\mathrm{lb})$
40. Coat the engine oil around the new O-ring in the oil filter and tighten the new oil filter with your hand until it is stopped.
41. Tighten the new oil filter approximately 0.75 over, using the following SST.

SST: 09228-87201-000

2. Tighten the compressor assembly with magnet switch. Tightening Torque: $24.5 \pm 4.9 \mathrm{~N} \cdot \mathrm{~m}$
($2.5 \pm 0.5 \mathrm{kgf}-\mathrm{m}, 18.1 \pm 3.6 \mathrm{ft}-\mathrm{lb})$
43. Measure the deflection of the drive beit.

Specified Value: 7-8 mm
44. Lower the drive belt with the tension of $9.8 \mathrm{~N}(10 \mathrm{kgf}, 7.2 \mathrm{lb})$.
45. Tighten the lock nut of the idler pulley.
46. Ensure that the deflection of the drive plate within the specification above.
47. With the new gasket used, tighten the fuel hose No. 1 and pipe air hose.

Tightening Torque: $39.2 \pm 4.9 \mathrm{~N} \cdot \mathrm{~m}$
$(4.0 \pm 0.5 \mathrm{kgf}-\mathrm{m}, 28.9 \pm 3.6 \mathrm{ft}-\mathrm{bb})$
8. Install the two heater hose.
49. Connect the connector of the fuse block assembly.
50. Install them to the body.
51. Connect the connector of the ground cable.
52. Apply soap with water around the rubber section of the engine harness.
53. Install them to the vehicle interior side and connect the coupler.

GAT00174-99999

AT-66

54. With the new hoses used, install the inlet and outlet hoses of the oil cooler.
55. Install the radiator reserver hose (A).
56. Connect the coupler of the radiator fan (B).
57. Connect the coupler of the air conditioner (if equipped so on).

58. Install the hoses (pressure and return) of the power steering.

59. Install the ground cable.
60. Tighten the ground cable (A)
61. Install the control cable assembly.
(As for the adjustment of control cable, see page AT-13).
62. Temporarily tighten the hood assembly with the two bolts on both left and right sides.
63. Align the food with the front fender by adjusting and moving the food lock.

Specified Value
Gap: $3.5 \pm 1.5 \mathrm{~mm}$
Difference in Various Points:
Not to exceed 1.5 mm
Difference in Left and Right Sides:
Not to exceed 1.5 mm
64. Install the front bumper, air cleaner, battery carrier and battery.
65. Add new power steering fluid.
66. Connect the ground cable of negative terminal to the battery.
67. Inspect the side slip (Refer to FS section)
68. Add new ATF Fluid

Fluid To Be Used: DEXRON II Capacity (ℓ):

Full, (Drain and refill): 5.7 (3.2)

COMPONENTS (PART 1)

COMPONENTS ${ }^{\prime}$ (TMAI

\square

COMPONENTS (PART 3)

(PART 1)

(1) Stiffener power train
(2) Cover clutch housing under
(3) Plate speedometer sleeve lock
(4) Clip
(5) O-ring
(6) Gear speedometer driven
(7) Oil seal
(8) O-ring
(9) Sleeve subassembly speedometer shaft
(10) Clip
(11) Hose oil cooler outlet
(122) Tube subassembly oil cooler outlet
(T) Transmission oil level gauge
(12) Gauge subassembly oil leve!
(16)-ring
(1) Nut
(11) Spring washer
(18) Lever transmission control shaft
(99) Transmission wire
(30) Spacer drive plate front
(2) Gear subassembly drive plate \& ring
(2) Assembly torque converter
(2) Knock pin
22) il 郎
(26) Clamp tube
(24) Tube differential gear lube apply
(2) Retainer roller bearing
(28) Bearing cylindrical roller
(2920 Plate oil reserver
(3) Magnet (3 pieces) oil cleaner
(3) Gasket
(83) Plug whead straight screw
(3) O -rings
(3) Plug

* Elbow
(2) Union
(3) Strainer subassembly oil
(3. Plate oil reserver
(93) Clamp tube
© Tube transaxle lub apply
(41) Bearing cylindrical roller
(22) Gasket governor apply
(333) Transaxle case
(4) Oil sea!
(16) Oil seal

44 Gasket 2nd brake apply
(17) Knock pin
(4) Gasket governor apply
(4) Gasket 2nd brake apply
(30) Case subassembly transmission
(1) O-ring
(32) Plug whead straight screw

Gasket governor apply
(3) Gasket
(3) Clamp
3. Hose subassembly front axie
(57) Transaxle side cover
(3) Bracket

699 Tube subassembly oil cooler inlet
(92. Hose oil cooler inlet
(01) Shatt parking lock pawl
(2) Spring torsion
(3) Pawl parking lock
(67) Roller
(5) Rollier
(69. Spring manual detent
(50) Spring torsion
(39) Sleeve spring guide
(67 Bracket parking lock pawl
(64 Shaft subassembly manual valve lever
(11) Spacer
(12) Slotted spring pin
(83) Lever manual valve
(14) Rod parking lock
(PART 2)
(75) Gear assembly differential
(67) Case differential
(10) Washer differential side gear thrust
(3) Gear differential side
(79) Pinion differential
(80) Washer differential pinion thrust
(61) Pin straight
(23) Shaft differential pinion
(23) Bearing tappered roller
(8) Gear speedometer drive
(39) Gear differential ring
(20) Plate ring gear set boll lock
(18) Washer plate

6920 Rearing tapered roller outer
(92) Bearing thrust needle roller
(2) Race thrust bearing
(91) Pinion differential drive
(923) Gear subassembly counter driven
(83) Bearing cylindrical roller
(92) Nut
3) Race thrust bearing
(29) Bearing thrust needle roller
(97) Drum subassembly reverse clutch w/bearing
(39) O-ring
(9) Piston subassembly reverse clutch
(iou. Spring subassembly reverse clutch piston
1lel: Ring hole snap
inti Plate clutch
ilifi Disc clutch No. 3
thif Ring hole snap
(ab) Bearing thrust needle roller
fitis: Shaft subassembly input
iill Bearing thrust needle roller
fot Race thrust bearing
iin Seal ring
(ifi) Flange sun gear input
fiil. Washer thrust
in' Retainer ring
:ilis: Band assembly 2nd \& 4th brake
ili. Pin straight
iib. Bearing tapered roller
:hf Spacer counter bearing
ifit Bearing tappered roller
in: Bearing tapered roller
ins. Lock nut
(22). Gear subassembly counter drive
[71: O-ring
in Oil seal
(in. Body oil pump
14. Gear oil pump driven
is. Gear oil pump drive
iz6 Shaft subassembly stator
127 Ring seal

12 Washer clutch drum thrust
im Spring compression
i3f Piston 2nd \＆4th brake
isl O－ring
in Rod 2nd \＆4th brake piston
93 Cover brake piston
in O－ring
ifs Lock washer
13s Ring hole snap
in．Cover brake
IV．O－ring
i月．Lock plate
นi Lock nut

（PART 3）

ki Ring shaft snap
iin．Piston 1st \＆reverse brake
if．O－ring
${ }^{14}$ ．Spring subassembly brake piston return
（Hs）Ring retainer
（uf Brake flange
＇mi＇Disc．clutch \＆flange
inil．Plate brake
（4）Flange brake
iss Ring hole snap
（ifl Race 1 way clutch inner
15i？Washer thrust
（15j）Race thrust bearing
（bib）Bearing thrust needle roller
（I5s）Ring hote snap
（I56）Clutch 1 way
figh Washer thrust
（bi）Gear subassembly front planetary ring
（50）O－ring
低i Flange front planetary ring gear
（19i）Ring hole snap
（M）Bearing thrust needle roller
（ifi）Race thrust bearing
（ige Gear assembly front planetary
iffsi Race thrust bearing
Thi Gear subassembly planetary sun
int：Bearing thrust needle roller
inji Hub overdrive clutch
（侕）Ring hole snap
（i）Bearing thrust needle roller
iftil Race thrust bearing
if Ring hole snap
ini Flange rear planetary ring gear
ind Gear subassembly rear planetary ring
（ij）Race 1 way clutch outer
if Clutch 1 way
if Retainer 1 way clutch
（in）Ring hole snap
（i79）Bearing thrust needle roller
rivi：Race thrust bearing
ivi Washer thrust
ive Ring hole snap
iss Flange clutch
iti Disc clutch
ifis：Plate clutch
in．Flange clutch
iivi Tube overdrive clutch apply
ii．Ring hole snap
iig Flange clutch
19．Disc clutch

191．Plate clutch
fis Flange clutch
18s．Ring shaft snap
isis Spring subassembly overdrive clutch return
155 O－ring
ifi Piston subassembly coast clutch
${ }^{197}$ O－ring
${ }^{10}$ Piston overdrive clutch
Drum subassembly overdrive clutch
Thing clutch drum oil seal
in Ring hole snap
\％Flange clutch
w Disc clutch
M Plate clutch
＊）Washer clutch drum thrust
Wing shaft snap
w Spring subassembly forward clutch return
in－ring
wi Piston subassembly forward clutch
in Drum subassembly clutch
il Bearing thrust needle roller
his Ring clutch drum oil seal
it Transaxle rear case

REMOVAL

Remove the assembly torque converter.
2. Measure the starting torque of the gear assembly differential, using the following SST.

SST: 09351-87711-000
Specified Value: $0.78-1.37 \mathrm{~N} . \mathrm{m}$

$$
(8.0-14.0 \mathrm{kgf}-\mathrm{cm}, 0.57-1.0 \mathrm{ft} \mathrm{lb})
$$

NOTE:

- Record the actual starting torque for reference of installation of the differential assembly.

3. Remove the bolt (A) of the clamp.
4. Remove the flare nut while securing the union by means of a standard spanner or the like.
5. Pull out the neutral start switch assembly by removing the following parts toward you.
(1) Pry off the lock washer
(Never reuse the removed lock washer)
(2) Nut
(3) Lock washer and rubber plate
(4) Two boits
6. Remove the following parts from the transaxle housing assembly.
(1) Fluid levei gauge with the O-ring installed.
(2) Vehicle speed sensor with the O-ring installed.
(3) C1 cylinder revolution sensor with the O-ring installed.
(4) Boit of the coupler solenoid.

NOTE:

- Never reuse the removed O-rings.

7. Remove the gear speedometer driven and sleeve subassembly speedometer sinaft by removing a bolt.
8. Remove the transaxle housing by removing the 15 bolts. NOTE:

- Never reuse the removed two bolts (A).

9. Pull-out the gear assembly differential toward you.
10. Clean and wipe off the gasket sealer on the contacting surface between the transaxie housing and transaxle case.

AT-74

11. Remove the six bolts of the body oil pump.
12. Remove three gaskets (for two governor apply and a 2nd brake apply) at the transaxle case side.
NOTE:

- Never reuse the removed gaskets.

13. Remove the body oil pump, using the following SST.

SST: 09610-20012-000
14. Remove the plate oil reserve by removing the two bolts.
15. Remove the strainer subassembly oil.
16. Remove the spring manual detent by removing the two bolts (Firstly remove the bolt (A) and bolt (B)).
17. Remove the transaxle side cover by removing the $\mathbf{1 2}$ bolts. NOTE:

- Never reuse the removed two bolts A.

18. Clamp off the solenoid wiring harness.
19. Disconnect the coupler of the solenoids for pressure control, shift No. 1, No. 2 and lock up control.
20. Remove the valve body assembly by removing the eight bolts.
NOTE:

- The numerical length of the bolts is indicating in the right figure.

21. Pull out the solenoid coupler.

GAT00195-99995

22. Remove the two gaskets governor apply.

NOTE:

- Never reuse the removed gaskets.

23. Turn over the lower part of the transaxle housing faces toward you.
24. Remove the ring hole snap, using the snap ring plier.
25. Pull out the cover brake (A) toward you, using the adjusting plier or the like.
26. Inspection of 2 nd $\& 4$ th brake piston stroke.
(1) Install the following SST with a dial indicator to the transaxle housing.
SST: 09351-87210-000
(2) Chock the of nole section (A) with your finger.
(3) Measure ine piston stroke while applying and releasing the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{~kg} / \mathrm{cm}^{2}, 56\right.$ $113 \mathrm{f}, \mathrm{b})$ from the oil section (B).
Specified Piston Stroke: $\quad 3.0-3.4 \mathrm{~mm}$
NOTE:

- If the piston stroke exceeds than specification above, Adjust the piston rod (see page AT-120) or inspect the band assembly 2 nd \& 4th brake for damage, wear or discoloration.
(4) Remove a dial indicator.

27. Remove the ring hole snap, using the standard snap ring plier or the like.
28. Pry off the iock section of the lock plate.
29. Slacken the nut of the piston rod in conjunction with a spanner (9 mm), a ring wrench (17 mm) and the SST (09351-87210-000).
30. Remove the piston rod with the nut, washer, piston rod and lock washer installed.
NOTE:

- Never reuse the removed lock washer.

31. Remove the washer from the piston rod.
32. Pull out the reverse clutch assembly faces toward you.
33. Remove the band assembly 2nd \& 4th brake.
34. Remove the pin straight (A).

Reference Value of Straight Pin
Length: 45 mm
Outer Diameter: 8 mm
35. Install the removed washer (step on 31) washer plate and lock nut to the SST (09351-87709-000) for avoiding the damage of the case during removal.
36. Insert the SST (Never use the air impact wrench for tightening the SST.) through piston rod hole.
37. Tighten the SST until hole snap ring is free.
38. Remove the ring hole snap.
39. Slacken the SST for 2 to 4 notches then apply the compressed air through oil hole (B).
40. Remove the cover brake piston, piston with the O-ring installed and compression spring.
41. Slacken the ten bolts of the transaxle rear cover.
42. Lightly and uniformly tap the two rib sections of the transaxle rear cover, using a plastic hammer.
43. Remove the ten bolts.

NOTE:

- Never reuse the removed two bolts A.

44. Pull out the transaxle rear cover toward you with the forward clutch, subassembly installed.
45. Remove the five gaskets (for governor apply and 2nd brake apply).
NOTE:

- Never reuse the removed gaskets.

46. Remove the planetary carrier for front/rear ring gear and gear assembly sun (A) with following integral bearing installed.

Integral Bearing With Race
Outer: 32.3 mm
Inner: 19.0 mm
Race Thickness: 2.7 mm
47. Pull out them (A) toward you.
48. Inspection of 1 st \& reverse brake piston stroke.
(1) Measure the piston stroke while applying and releasing the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{kgf} / \mathrm{cm}^{2}, 56-\right.$ $113 \mathrm{ft}-\mathrm{lb}$) through oil hole section (A), using the following SST.

SST: 09351-87210-000
Specified Value: 1.4-2.2 mm
NOTE:

- If the piston stroke exceeds than specification above, inspect the flanges, discs or replace them.

19. Remove the ring hole-snap, using the tlat ariver.
20. Remove the flange brakes (F), disc, clutch \& flanges (D) and plate brakes (P) in the following order.

$$
\mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{~F}
$$

51. Remove the ring retainer and return spring subassembly brake piston return.
52. Remove the piston 1st \& reverse brake with O-ring installed while applying and releasing the compressed air 392-784 $\mathrm{kPa}\left(4-8 \mathrm{kgf} / \mathrm{cm}^{2}, 56-113 \mathrm{ft}\right.$-ib) through oil hole section (A).

NOTE:

- Never reuse the removed O-rings.
- If the piston will not pop out, it is recommended to use needle nose pliers for removal.

53. Remove the pawl parking lock and bracket parking lock pawl by removing the tow bolts.
54. Pry off the spring torsion of pawl parking lock.
55. Remove the pawl parking lock by pulling out the shaft parking lock pawi with the spring torsion installed.
56. Pull out the gear subassembly counter driven toward you.
57. Remove the integrated needle roller bearing with race.

Race Dimension
Outer Diameter: 65.7 mm
Inner Diameter: 51.0 mm
Thickness: 2.8 mm
58. Remove the tube transaxle lube apply by removing a bolt.
59. Measure the starting torque of the gear subassembly counter drive, using the torque wrench and following SST.

SST: 09351-87718-000
Specified Value
Torque Wrench: $0.49-3.9 \mathrm{~N} \cdot \mathrm{~m}$
($0.5 \cdot 4.0 \mathrm{kgf}-\mathrm{cm}, 0.36-3.9 \mathrm{ft}-\mathrm{bb}$)
60. Unstake the lock sections of lock nut. NOTE:

- Never reuse the removed lock nut.

AT-78

61. Clamp the SST (09351-87717-000) in a vice and place the transaxle housing onto the SST above.
62. Measure the transaxle housing rotational torque, using the push-pull gauge or the like.

Specified Value: $1.27-10.3 \mathrm{~N}$

$$
(0.13-1.05 \mathrm{kgf}, 0.28-2.3 \mathrm{lb})
$$

63. Remove the lock nut.
64. Remove the SST (09351-87717-000) from the vice.
65. Press the gear subassembly counter drive, using the following SST.

SST: 09351-87715-000
66. Remove the spacer counter bearing.

NOTE:

- Never reuse the removed spacer counter bearing as it is for crushable type.

67. Collapse the outer race of the bearing tapered roller of the gear subassembly counter drive.
68. Remove the inner race of the bearing tapered roller, using the following SST.

SST (A): 09351-87703-000
(B): 09351-87704-000
(C): 09351-87715-000
. Remove the ring shaft snap (A)
70. Press the outer race of the transaxle case, using the following SST.

SST: 09351-87720-000

71. Collapse the spacer, using the chiesel and hammer or the like.
72. Remove the slotted spring pin, using the pin punch or the like.
NOTE:

- Never reuse the removed spacer and slotted spring pin.
'3. Remove the shaft subassembly manual valve lever, lever manual valve and oil seal.
NOTE:
- Never reuse the removed oil seal.

OIL PUMP COMPONENT

DISASSEMBLY OF OIL PUMP

GATOO220-9g909

1. Remove the two seal rings and washer clutch drum thrust from the shaft subassembly stator back side. NOTE:

- Never reuse the removed ring seals once removed.

2. Remove the shaft subassembly stator by removing the eight torx bolts, using the torx wrench.
3. Remove the oil seal.

NOTE:

- Never reuse the removed oil seal.

INSPECTION OF OIL PUMP

1. Push the gear oil pump driven to one side of the body oil pump. Measure the body clearance of the oil pump driven gear, using a feeler gauge.

Specified Body Clearance: $0.075-0.15 \mathrm{~mm}$
Maximum Body Clearance: 0.3 mm
If the body clearance is greater than the maximum, replace the body oil pump and shaft subassembly stator.

2. Measure the tip clearance of gear oil pump driven between the gear oil pump drive teeth and the crescent-shaped part of the pump body.

Specified Tip Clearance: $0.004-0.248 \mathrm{~mm}$
Maximum Tip Clearance: 0.3 mm
If the tip clearance is greater than the maximum, replace the body oil pump and shaft subassembly stator.
3. Measure the side clearance of both gears, using a steel straightedge and a feeler gauge.

Specified Side Clearance: $0.02-0.05 \mathrm{~mm}$
Maximum Side Clearance: 0.1 mm

The drive and driven gears come in three different thicknesses.

Drive $=(A)$ and Driven Gear $=(B)$ Thickness (unit: mm)

(A)	(8)
$9.440-9.449$	$9.440-9.449$
$9.450-9.459$	$9.450-9.459$
$9.460-9.470$	$9.460-9.470$
$9.471-9.480$	$9.471-9.430$
$9.481-9.490$	$9.481-9.490$

If the thickest gear can not make the side clearance within the specification, replace the assembly or body oil pump and shaft subassembly stator.

ASSEMBLY OF OIL PUMP

1. Installation of oil seal

Install a new oil seal, using the following SST in combination with a hammer. The seal end should be flush with the outer edge of ine pump body. (see page AT-55)

SST: 09351-32140-000
2. Install the gear oil pump driven and gear oil pump drive. Make sure that the top of the gears are facing upward.
3. Tighten the eight torques bolts.

NOTE:

- Be sure to tighten the bolts alternately and uniformly. (The right figure indicates a typical example of the tightening sequence.)
Tightening Torque: $9.8-13.7 \mathrm{~N} \cdot \mathrm{~m}$
(1.0-1.4 kgf-m, $7.2-10.1 \mathrm{ft}-\mathrm{lb})$

4. Install the two new ring seals

NOTE:

- Do not spread the ring end excessively.

5. Coat the washer clutch drum thrust with vaseline and install them.
6. Check of gear oil pump drive and gear oil pump driven rotation
Turn the gear oil pump drive with two screwdrivers and make sure it rotates smoothly.
CAUTION:

- Be very careful not to damage the oil seal lip.

FORWARD CLUTCH (C1) COMPONENTS

1. Measurement of piston stroke
(1) Install the forward clutch (C1) assembly to the transaxle rear cover.
(2) Measure the piston stroke while applying and releasing the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{~kg} / / \mathrm{cm}^{2}, 56-\right.$ 113 psi) through oil hole section (A), using a dial indicator.
Specified Piston Stroke: $0.76-1.44 \mathrm{~mm}$

NOTE:

- The front end of a dial gauge should be contacted to the piston directly.

DISASSEMBLY

(3) If the piston stroke is greater than maximum, disassembly the inner parts.
(4) Remove the flange, discs and plates by removing the hole snap ring in the following order.

F = Flange Clutch
D = Disc Clutch
$P=$ Plate Clutch

$$
F \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P}
$$

（5）Remove the washer thrust．
（6）Remove the spring subassembly forward clutch return by removing the ring shaft snap，using the following SST．
SST：09351－87708－000

NOTE：

－Stop to tighten the SST when the ring shaft snap is free．

CAUTION：

－Never drop the protrusion section of the forward clutch drum，Failure to observe this caution way cause the malfunction of C1 cylinder revolution sensor．
（7）Install the piston subassembly forward clutch to the transaxle rear cover．
（8）Remove the piston subassembly forward clutch with the O－rings installed through oil hole（A），using the com－ pressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{~kg} / \mathrm{cm}^{2}, 56-113 \mathrm{psi}\right)$ ．
NOTE：
－If the piston will not pop out，it is recommended to use needle－nose pliers for removal．
－Never reuse the removed O－rings．
（9）Remove the ring clutch drum oil seals of the drum sub－ assembiy forward clutch（B）and transaxle rear cover （A）．

INSPECTION

1．Check that the sliding surfaces of the discs，plates and flanges are not worn or burnt．If necessary，replace them．
NOTE：
－If the lining of the disc is exfoliated or discolored，or even a part of the printed numbers（A section AD506）is defaced，replace all discs．
－Before assembling new discs，soak them in the ATF for at least two hours．

2．Measure the height of the spring subassembly forward clutch return．

Specified Value： 22 mm

NOTE：

－Do not apply excessive measuring force when measur－ ing the height of the spring．Perform the measurement at several points．

3. Ensure that creaking noise of the ball (A) is emitted when shaking the piston subassembly forward clutch clockwise and counterclockwise. (Namely, ensure that the ball is free.)
4. Check that the valve exhibits no leakage from the backside of oil hole (A) by applying the low-pressed air.

ASSEMBLY

1. Coat the new ring clutch drum oil seals with the ATF.
2. Insta!l them to the transaxle rear case (A) and drum subassembly forward clutch (B).
NOTE:

- Do not spread the ring ends excessively.
- Make sure that the opening ends of the oil seal rings are not lined up so as to prevent fluid leakage.

3. Coat the new O-rings with the ATF.
4. Install the new O-rings to the piston subassembly forward clutch.
5. Press the piston subassembly forward clutch to the drum subassembly clutch with your fingers.

NOTE:

- Make sure that the O-ring is not to twisted or deviated from position during insertion of the piston.

6. Place the spring subassembly forward clutch return.
7. Install the ring shaft snap, using the following SST and standard snap ring plier.

SST: 09351-87708-000

NOTE:

- Make sure that the ring end are not aligned with spring retaine claw.

8. Remove the aforesaid SST.
9. Install the ring hole snap by installing the plates (P), disces (D) and flange in the following order.

$$
\mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{~F}
$$

NOTE:

- Ensure that the flat end of flange faces toward the upper side (A). Also, make sure that the opening end of ring is not aligned with the groove section.

10. Coat the race (A) and washer clutch drum thrust (B) with the vaseline.

Race Dimension:
Unit: mm

Outer diameter	30.3
Inner diameter	19.1
Thickness	2.7

11. Instail them to the drum subassembly clutch.

12. Measure the piston stroke of the piston subassembly forward clutch again.

JVERDRIVE (CO) \& COAST (C3) CLUTCHES

GAT00243-999P9

1. Measurement of piston stroke for overdrive and coast clutches.
(1) Install the piston subassembly forward clutch and overdrive/coast clutch assembly to the transaxle rear cover.
(2) Measure the piston stroke while applying and releasing the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{~kg} / \mathrm{cm}^{2}, 56-\right.$ $113 \mathrm{psi})$ through oil hole of (A) and (B) section, using a dial indicator and following SST.
SST: 09351-87203-000

Specified Piston Stroke:
(A) Overdrive Clutch: $0.75-1.05 \mathrm{~mm}$
(B) Coast Clutch: $2.68 \cdot 3.02 \mathrm{~mm}$

NOTE:

- If the piston stroke is greater than maximum, select the flanges or disassembly the inner parts.

DISASSEMBLY

1. Remove the flanges (F), discs (D) and plate (P) of the overdrive clutch in the following order by removing the ring hole snap.

$$
F(A) \rightarrow D \rightarrow P \rightarrow D \rightarrow F
$$

NOTE:

- Measure the thickness of removed flange (A) and record it for the reference of piston stroke confirmation.

2. Remove the tube overdrive clutch apply.

3. Remove the spring subassembly overdrive clutch return by removing the ring shaft snap, using the following SST.

SST: 09351-87707-000

NOTE:

- To prevent the spring seat deformation, be sure to keep a clearance of $1-2 \mathrm{~mm}$ between return spring seat subassembly and shaft snap ring.

5. Install the forward clutch assembly, piston subassembly coast clutch with the piston overdrive clutch installed.
6. Remove the piston subassembly coast clutch with the O-rings installed, using the compressed air $392-784 \mathrm{kPa}$ ($4-8 \mathrm{kgt} / \mathrm{cm}^{2}, 56-113 \mathrm{psi}$) through oil hole (B).
7. Remove O-rings from the piston.

NOTE:

- Never reuse the removed O-rings.

Remove the piston overdrive clutch with the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{kgf} / \mathrm{cm}^{2}, 56-113 \mathrm{psi}\right)$ through oil hole (A).
9. Remove the O-rings from the piston.

NOTE:

- Never reuse the removed O-rings.

INSPECTION

1. Check that the sliding surfaces of the discs, plates and flanges are not worn or burnt. If necessary, replace them.
NOTE:

- If the lining of the disc is exfoliated or discolored, or even a part of the printed numbers is defaced, replace all discs.
- Before assembling new discs, soak them in the ATF for at least two hours.
(A): O/drive
2A02
(B): Coast AD50GA010

2. Measure the height of the piston subassembly coast clutch. Specified Value: 18.9 mm

NOTE:

- Do not apply excessive measuring force when measuring the height of the spring. Perform the measurement at several points.

3. Ensure that creaking noise of the ball is emitted when shaking the piston clockwise and counterclockwise. (Namely, ensure that the ball is free.)

ASSEMBLY

1. Coat the new O-rings with the ATF.
2. Install them to the pistons.
3. Set the piston subassembly coast clutch to the piston overdrive clutch by pushing with your fingers.
4. Press the overdrive and coast clutch piston to the drum subassembly overdrive clutch.

- Make sure that the O-rings are not twisted or deviated from position during insertion of the piston.

GAT00251-99999

5. Install the spring subassembly overdrive clutch return, using the following SST.

SST: 09351-87707-000
6. Install the ring shaft snap.

NOTE:

- To prevent the spring seat deformation, be sure to keep a clearance of $1-2 \mathrm{~mm}$ between spring seat and ring.
- Ensure that the opening end of ring are not aligned with the claw section of the return spring seat subassembly.

7. Select and measure the correct thickness of the coast clutch flange (B).

Parts Availability
Unit: mm

Thickness	Pars nurber
3.6	$35635-87706$
3.8	$35635-87708$
4.0	$35635-87709$

8. Instail the flange (F), discs (D) and plate (P) of the coast clutch in the following order.

$$
\mathrm{F}(\mathrm{~A}) \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{~F}(\mathrm{~B})
$$

NOTE:

- Be sure to confirm the flat section of the flange (B) which is selected in the step 7 faces toward the piston side and also flange (A) faces toward the upper side.

9. Install the ring hole snap.

NOTE:

- Ensure that the opening end of ring are not aligned with the groove section of the drum.

10. Install the tube overdrive clutch apply.

. Install the flanges (F), discs (D) and plate of the overdrive clutch in the following order.

$$
\mathrm{F}(\mathrm{~A}) \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{~F}(\mathrm{~B})
$$

NOTE:

- Be sure to confirm the flat section of the flange (B) which is selected in the step 11 faces toward the piston side and also flange (B) faces toward the upper side.

3. Install the ring hoie snad.

NOTE:

- Ensure that the opening end of ring are not aligned with the groove section of the drum.

14. Install the forward clutch assembly and clutch assembly overdrive direc: multiple D to the transaxie rear cover.
15. Measure the piston stroke again, using a dial indicator and the following SST.

SST: 09351-87203-000
Specified Piston Stroke
(A) Overdrive Clutch: $0.75 \cdot 1.05 \mathrm{~mm}$
(B) Coast Clutch: $2.68-3.02 \mathrm{~mm}$

GATO0000-99309

FRONT AND REAR PLANETARY RING GEAR

(1) Race I way clutch inner
(2) Washer thrust
(3) Race thrust bearing
(4) Bearing thrust needle roller
(5) Ring hole snap
(6) Clutch 1 way clutch
(7) O-ring
(8) Gear subassembly front planetary ring
(9) 0 -ring
(10) Flange front planetary ring gear
(1) Ring hole snap
(12) Bearing thrust needie roller
(13) Race thrust bearing
(14) Gear assembly planetary
(15) Race thrust bearing
(16) Gear subassembly planetary sun
(17) Bearing thrust needle roller
(1i8) Hub overdrive clutch
(19) Ring hole snap
(20) Bearing thrust needie roller
(21) Race thrust bearing
(22) Ring hole snap
(23) Flange rear planetary ring gear
(24) Gear subassembly rear planetary ring
(29) Race 1 way clutch outer
(23) Clutch I way
(22) Retainer 1 way clutch
(28) Ring hole snap
(29) Bearing thrust needle roller
(90) Race thrust bearing
(31) Washer thrust

Pperation check of 1 way clutches

Install the forward clutch assembly and overdrive/coast clutch assembly to the transaxle rear cover.
2. Instal! the planetary ring gear assembly to the forward clutch and install the 1 way clutch No. 0 (F0) to the planetary ring gear faces toward the front side.
NOTE:

- Ensure that the one-way clutch No. 0 (F0) turns freely when turned clockwise (A) and locked when turns counterclockwise (B).

3. Remove the planetary ring gear assembly from the forward clutch assembly.
4. Turn over the planetary ting gear assembily.
5. Ensure that the one-way clutch No. 1 (F1) turns freely when turned counter clockwise (A) and locked when turns clockwise (B).

DISASSEMBLY - No. 1 (F1)

1. Remove the following parts by removing the ring snap hole (A).

- Hub overdrive clutch (B)
- Gear assembly planetary (C)
- Two race thrust bearings (D)

2. Pull out the bearing thrust needle roller.

Reference Valve for Bearing Unit: mm
Outer Diameter ... Approx: 83.2 mm
Inner Diameter ... Approx: 68.3 mm
Thickness Approx: 2.6 mm
3. Turn over them.

4. Remove the clutch 1 way No. 1 (F1) by removing the ring hole snap.

5. Remove the washer thrust (A) and race thrust bearing (B). Reference Value for (A) and (B)

Unit: mm

	(A)	(B)
Outer diameter Approx	85.3	80.2
Inner diameter Approx	70.0	68.3
Thickness Approx	2.0	0.8

6. Remove the bearing thrust needle roller.

Reference Value for Bearing
Outer Diameter ... Approx: 83.2 mm
Inner Diameter ... Approx: 64.9 mm
Thickness Approx: 2.7 mm
7. Remove the O-ring.

NOTE:

- Never reuse the removed O-ring

8. Turn over them.
9. Remove the flange front planetary ring gear by removing the ring snap.
10. Remove the O-ring.

NOTE:

- Never reuse the removed O-ring

INSPECTION

1. Visually check the discolored or scratch for the following parts.
(A) Outer periphery of one-way clutch No. 1 inner race.
(B) Outer periphery of roller.
(C) Inner periphery of gear subassembly rear planetary ring.

Coat a new O-ring with ATF.
Install a new O-ring.
6. Place the bearing thrust needle roller.

Reference Value for Bearing Unit: mm
Outer Diameter ... Approx: 83.2
Inner Diameter Approx: 68.4
Thickness Approx: 2.7
7. Coat the race thrust bearing (A) and washer thrust (B) with ATF.
8. Install them.

Reference Value for (A) and $(B) \quad$ Unit: $m m$

	(A)	(B)
Outer diameter Approx	80.2	85.3
Inner diameter Approx	68.3	70.0
Thickness Approx	0.8	2.0

9. Set the inner race and clutch 1 way.

NOTE:

- Ensure that the D section (shorter than rear) of the inner race faces toward the front side.
- Ensure that the thinny section (E) of clutch 1 way faces toward the frunt side.

10. Install the clutch 1 way No. 1 (F1) with the ring hole snap.

11 Turn over them.
12. Coat the two race thrust bearings (D) with ATF.
13. Install the gear subassembly planetary (C), hub overdrive clutch (B) with the ring hole snap.
14. Install the two race thrust bearings (D).
15. Check the oreration of clutch 1 way.

Disassembly No. 0 (F0)

1. Remove the washer thrust, race thrust bearing (A) and bearing thrust needle roller (B).

Race (A) and Bearing (C) Dimension Unit: mm

	(A)	(B)
Outer diameter Approx	29.4	70.8
Inner diameter Approx	19.6	57.2
Thickness Approx	0.8	2.7

2. Remove the retainer 1 way ciutch with bearing thrust needie roller by removing the ring hole snap.

INSPECTION

1. Visually check the discolored or scratch of the following parts.
(A) Outer periphery of clutch 1 way
(B) Inner periphery of race clutch outer
(C) Inner periphery of gear subassembly rear planetary ring

Assembly

1. Set the clutch 1 way to the race 1 way clutch outer and gear subassembly rear planetary ring.
NOTE:

- Ensure that the thinny section (E) of clutch 1 way faces toward the front side.

Turn over them.
Install the ring hole snap.
6. Coat the race thrust bearing (B). bearing thrust needie roller (C) and washer thrust with ATF.
7. Install them.

Race (A) and Bearing (C) Dimension Unit:mm

	(B)	(C)
Outer diameter …...... Approx	29.4	70.8
Inner ciarteter Approx	19.6	57.2
Thickness Approx	0.8	2.7

8. Operation check of one-way clutches
(1) Instali the forward clutch assembly and overdrive/coast clutch assembly to the transaxle rear cover.
(2) Install the planetary ring gear assembly to the forward clutch and install the 1 way clutch No. 0 (FO) to the planetary ring gear faces toward the front side.
NOTE:

- Ensure that the one-way clutch No. 0 (FO) turns freely when turned clockwise (A) and locked when turns counterclockwise (B).

GATO9503-99999

REVERSE CLUTCH

GAT00282.99999

1. Measurement of pack clearance
(1) Remove the shaft subassembly input with the washer thrust installed by removing the ring retainer.

(2) Remove the ring hole snap of the drum subassembly reverse clutch w/bearing.

(3) Remove the shaft assembly input with the race thrust bearing, bearing thrust needle roller and bearing thrust needle rolier installed.
(4) Install the flange sun gear input (washer thrust installed) with the ring retainer.
(5) Mount the drum subassembly reverse clutch w/bearing to the body oil pump.
(6) Measure the pack clearance with the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $\left.56-113 \mathrm{psi}\right)$ through oil hole section (A), using a dial indicator.
Specified Value: $0.64-1.50 \mathrm{~mm}$

NOTE:

- To prevent air leakage from the oil hole section (A) during the pack clearance measurement with the air nozzle gun, it is recommended to plug the oil hole section around the air nozzle gun with the clean cloth or the like because the pack clearance can not be measured.
- If it is difficult to obtain the correct specified value above, it is recommended to make the plate (Thickness: approximately 3 mm) in line with the shape around the oil hole section ($B=$ doting line as shown in the illustration above).

DISASSEMBLY

Remove the drum subassembly reverse clutch w/bearing from the body oil pump.
2. Remove the flange sun gear input with the washer thrust installed by removing the ring retainer.

GATO0296.99999

3. Remove the disc clutches No. 3 (D) and plate clutches (P) in the following order.

$$
\mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D}
$$

4. Remove the spring assembly reverse clutch return by removing the ring snap. using the following SST.

SST: 09351-87707-000
NOTE:

- To prevent the deformation of seat spring, it is recommended to compress the seat spring until the claw section of the snap ring is free.

5. Mount the drum subassembly reverse clutch w/bearing to the body oil pump.
6. Remove the piston subassembly reverse clutch by blowing the compressed air $392-784 \mathrm{kPa}\left(4-8 \mathrm{kgf} / \mathrm{cm}^{2}, 56-113\right.$ $\mathrm{psi})$ through oil hole section (A).
7. Remove the two O-rings from the piston.

NOTE:

- Never reuse the removed O-rings.

INSPECTION

1. Check that the sliding surfaces of the disc and plate are not worn or burnt. If necessary, replace them.
NOTE:

- If the lining of the disc is exfoliated or discolored, or even a part of the printed numbers (2A02) is defaced, replace all discs.
- Before assembling new discs, soak them in the ATF for at least two hours.

2. Ensure that creaking noise of the ball is emitted when shaking the piston subassembly reverse clutch clockwise and counterclockwise. (Namely, ensure that the ball is free.)
3. Check that the value exhibits no leakage by applying the low-pressed air onto the ball (A).
4. Measure the height of the spring subassembly reverse clutch return.

Specified Value: 18.7 mm

NOTE:

- Do not apply excessive measuring force when measuring the height of the spring. Perform the measurement at several points.

Check that the outer periphery of the drum subassembly reverse clutch w/bearing are not worn or burnt. If necessary, replace them.

ASSEMBLY

1. Coat a new O-ring with the ATF.
2. Install them to the piston.
3. Press the spring subassembly reverse clutch return into the drum subassembly reverse clutch w/bearing with the cup side up.
NOTE:

- Being careful not to twist or device the O-rings during installation.

4. Place the spring subassembly reverse clutch return onto the piston subassembly reverse clutch.
5. Install the ring snap, using the following SST.

SST: 09351-87707-000

NOTE:

- To prevent the spring seat deformation, be sure to keep a clearance of 1.2 mm between return spring seat and shaft snap ring.

6. Install the plate clutches (P) and disc clutches No. 3 (D) in the following order with the hole snap ring,
$\mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D}$

NOTE:

- Ensure that flat end section of the plates faces toward the piston side.

7. Install the flange sun gear input with the ring retainer.

8. Measure the pack clearance (refer to step 1).
9. Remove the reverse clutch from the body oil pump.
10. Remove the flange sun gear input by removing the ring retainer.

GATOCZ90.000:
11. Coat a race with integrated needle roller bearing (A) with the vaseline.
12. Install them to the input gear.

Race with Bearing Dimension
Race Outer Diameter: 31.1 mm
Inner Diameter: 18.7 mm
Thickness: 2.6 mm

13. Coat a race (B) with the vaseline.
14. Install them to the input gear.

Race Dimension
Outer Diameter: 33.3 mm
Inner Diameter: 21.7 mm
Thickness: 2.0 mm
GATO0301-00000
15. Coat the washer thrust with the vaseline.
16. Install them to the shaft assembly input.

COUNTER DRIVEN GEAR

(1) Bearing thrust needle roller
(5) Bearing cylindrical roller
(2) Race thrust bearing
(6) Lock nut (vehicle speed sensor)
(3) Pinion differential drive
(7) Race thrust bearing
(4) Gear subassembly counter driven
(8) Bearing thrust needle roller

DISASSEMBLY

1. Remove the transaxie housing.
2. Clamp the SST (09351-87719-000) in a vice.
3. Unstake the lock section of the lock nut for vehicle speed sensor.
4. Remove the lock nut for vehicle speed sensor, using the following SST. SST (A): 09351-87716-000

5. Remove the cylindrical roller bearing by pressing the pinion differential drive, using the following SST.

SST: 09351-87719-000

ASSEMBLY

1. Press the pinion differentia! drive to the gear subassembly counter driven, using the following SST.

SST: 09351-87719-000

2. Coat the inner periphery of the new bearing cylindrical roller with the ATF.
3. Press the bearing cylindrical roller, using the following SST.

SST (A): 09351-87713-000
SST (B):

4. Tighten the new lock nut for vehicle speed sensor, using the following SST.

SST: 09351-87716-000

Tightening Torque:
98.0-147.0 - N.m
($10.0 \cdot 15.0 \mathrm{kgf}-\mathrm{m}, 72.0-109.0 \mathrm{ft}-\mathrm{lb}$)

5. Stake a new lock nut. using a standard punch in combination with a hammer.

NOTE:

- When staking the lock nut, point a suitable staking tool toward the pinion differential shaft axis center and stake the lock nut securely, as shown in the figure below. (Poor staking may cause abnormal noise.)
(1) Suitable staking tool
(2) New nut
(3) Shaft

GATO031 $1-99999$
6. Coat a race with integrated needle roller bearing with ATF.
7. Place them to the transaxle case.

Race with Bearing Dimension: Approx.
Race Outer Diameter: 65.8 mm Inner Diameter: 51.0 mm Thickness: 2.7 mm

?. Coat a race with ATF.
. . Place them to the race with integrated needle roller bearing. Race Dimension: Approx.

Outer Diameter: 45.7 mm
Inner Diameter: 30.0 mm
Thickness: 3.0 mm
10. Install the gear subassembly counter driven to the transaxle case. (see page AT-112 to AT-122).
11. Install the transaxle case assembly to the vehicle (see page AT-56 to AT-67).

VALVE BODY

DISASSEMBLY

1. Remove the valve body from the transaxle case assembly.
2. Pull out the valve manual.
3. Remove the followings solenoid by removing the bolts.
(A)...Pressure control
(B)...Shift No. 1
(C)...Shift No. 2
(D)...Lock up
4. Remove the valve body assembly by removing the nine bolts.
5. Turn over the valve body assembly.

6. Remove the four bolts of the rear valve body assembly.
7. Remove the gaskets rear valve body and plate separator together with rear valve body assembly by holding them with your hands.
NOTE:

- Never reuse the removed gasket.

8. Ensure that the six balls (A), strainer oil solenoid (B) and valve checks with compression spring (C) are located in place.

9. Ensure that the valve check with compression spring of the front valve body are located in place.
10. Remove the following parts by removing the 11 bolts of the cover rear valve body.

INSPECTION

Measure the free length and outer diameter of the compression springs.

GAT00322.99999

Parts name			Compression spring		
			Free length	Outer diameter	Identification mark
(1)	Valve secondary regulator		47.4	9.5	None
(2)	Valve B1 modulator controt		23.9	7.7	Pink
(3)	Valve low coast modulator		32.8	7.6	Red
(4)	Valve solenoid modulator valve		28.5	8.0	Purple
(6)	Piston accumulator		42.0	20.9	Biue
(6)	Piston accumulator		29.5	21.0	White
(7)	Valve lock up control valve		64.9	9.6	None
(8)	Valve $2-3$ shift timing		21.1	7.7	White
(9)	Valve C3 modulator		35.6	11.0	Light green
(19)	Piston accumulator	Outer	42.0	21.0	Red
		Inner	42.0	15.5	Red
(11)	Piston accumulator		45.1	21.1	Light green
(12)	Accumulator counter		23.8	16.5	Pink

ASSEMBLY

1. Place the check ball (A) in the cover rear valve body.
2. With the new gaskets rear valve body interposed, tighten the cover rear valve body with the bolts.

Tightening Torque: $7.9-11.8 \mathrm{~N} \cdot \mathrm{~m}(0.8-1.2 \mathrm{kgf}-\mathrm{m}, 5.8-8.7 \mathrm{ft}-\mathrm{lb})$

AT-108

4. Ensure that the check balts (A), strainer oil solenoid (B) and check valve with compression spring (C) of the front valve body are located in place.
5. Place the new gaskets, plate separator and rear valve body to the front valve body assembly.
6. Hold them with your hand and turn over.
7. Temporarily tighten the rear valve body with your fingers.
8. Turn over the valve body assembly.
9. Temporarily tighten the front valve body assembly with your fingers.
10. Turn over them again and tighten the rear valve body assembly with the four bolts.

Tightening Torque: $5.9-7.3 \mathrm{~N} \cdot \mathrm{~m}$ ($0.6-0.75 \mathrm{kgf}-\mathrm{m}, 4.3-5.4 \mathrm{ft}-\mathrm{lb}$)
11. Turn over them and tighten the front valve body assembly with the nine bolts.

Tightening Torque: $5.9-7.3 \mathrm{~N} \cdot \mathrm{~m}$ ($0.6-0.75 \mathrm{kgf}-\mathrm{m}, 4.3-5.4 \mathrm{ft}-\mathrm{lb}$)

DIFFERENTIAL

DISASSEMBLY

1. Collaps the outer race of bearing tapered roller.
2. Remove the inner race of bearing tapered roller, using the following SST.

SST: 09351-87703-000,09351-87704-000, 09351-87705-000
3. Remove the gear speedometer drive.

4. Clamp the case differential in a vice.
5. Measure the gear differential side backlash while the pinion differential pushed against the case differential side.

Specified Valve: $0.06-0.22 \mathrm{~mm}$

NOTE:

- If the gear differential side backlash exceed than specification above, proceed to remove the following inner parts.

9. Pull out the shaft differential pinion until the shaft is stopped (A) to the case differential .
10. Remove a washer differential pinion thrust.
11. Pull out the shaft differential pinion toward the (B) and then remove the two pinion differentials / gear differential sides and washer differential pinion thrust.
NOTE:

- Measure the thickness of the removed washer differential side gear thrust for the reference of installation.

12. Remove the oil seals of the transaxle housing and case. NOTE:

- Never reuse the removed oil seals.

13. Drive out the race tapered roller bearing outer and washer plates, in combination with the hammer and brass bar or the like.
NOTE:

- Measure the thickness of the removed washer plates for the reference of installation.

Inspection

1. Visually inspect the rotational sliding section between the pinion differential and the shaft pinion differential for damage and wear.

MSSEMBLY

-1. Apply ATF to the sliding section of the gears and case.
2. Install the following parts to the differential case.
(1) Two gears differential side
(2) Same thickness of the washers differential side gear thrust
(3) Two pinions differential
(4) A washer differential pinion thrust

3. Apply ATF to the outer periphery of the shaft differential pinion.
4. Insert the haft differential pinion into case differential from (B) to (A).
5. Insert a washer differential pinion thrust.

6. Place the adjusting washer plate (same thickness of removed washer plate) to the transaxie case and housing sides.
7. Drive a new race tapered roller bearing outer into the transaxie case and housing, using the following SST and hammer.

SST: 09351-87712-000

11. Instal! the gear speedometer drive.
12. Press the new bearing tapered rollers into the case differential, using the following SST.

SST: 09351-87713-000
13. Clean the contact surface of the differential case.
14. Heat the ring gear to about $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ in an oil bath. CAUTION:

- Do not heat the ring gear above $110^{\circ} \mathrm{C}\left(230^{\circ} \mathrm{F}\right)$.

15. Clean the contact surface of the ring gear with cleaning solvent.
16. Quickly install the ring gear to the differential case.
17. Install a new four plate ring gear set bolt lock with the eight bolts and tighten them.

Tightening Torque:
90.2 - $103.0 \mathrm{~N} \cdot \mathrm{~m}$
(9.2 - $10.5 \mathrm{kgf}-\mathrm{m}, 66.5-75.9 \mathrm{ft}-\mathrm{lb}$)
18. Stake the new plate ring gear set boit lock, using the hammer and drift punch or the like.
NOTE:

- Stake the plate ring gear set bolt locks securely.

19. Install the differential assembly to the transaxle case.
20. Tighten the transaxle case (see page AT-118).
21. Measure the preload of the differential, using the following SST and a torque meter.

SST: 09351-87711-000
Specified Value Preload (at starting):
$0.8-1.4 \mathrm{~N} \cdot \mathrm{~m}(8.0-14.0 \mathrm{kgf}-\mathrm{cm})$

- If the preload exceeds the specified value above, reselect the washer plate on both transaxle case and housing sides
- The preload changes about 0.3 - $0.4 \mathrm{~N} \cdot \mathrm{~m}$ (3.0 $4.0 \mathrm{kgf}-\mathrm{cm})$ with each plate washer thickness.
- Parts availability ... Unit: mm
2.35 (A), 2.40 (B), 2.45 (C), 2.50 (D), 2.55 (E),
2.60 (F), 2.65 (G), 2.70 (H), 2.75 (J), 2.80 (K),
$2.85(\mathrm{~L}), 2.90(\mathrm{M}), 2.10(\mathrm{Q}), 2.15(\mathrm{R}), 2.20(\mathrm{~S})$,
2.25 (T), $2.30(\mathrm{U})$

NOTE:

TRANSAXLE HÓUUSING

-REMOVAL

1. Remove the oil seal.

NOTE:

- Never reuse the removed oil seal.

2. Remove the plate oil reserver with three magnets by removing the three bolts.
3. Remove the retainer roller bearing by removing a bolt.

GATO0348-99999
4. Remove the bearing cylindrical roller, using the following SST.

SST: 09351-87703-000,09351-87706-000
NOTE:

- Never reuse the removed bearing.

Remove the integrated needle roller bearing with race.

INSPECTION

Check of pan for particles
Remove the magnets and use them to coilect any steel chips. Inspect the oil reserver plate for any chips and particles collected on the magnet. Inspect them carefully to find out the type of wear of the transmission.

Steel (magnetic) ... Wear of bearing, gear and plate Brass (nonmagnetic) ... Wear of bush

INSTALLATION

1. Apply ATF to the integrated needle roller bearing with race.

Race Dimension
Outer Diameter: 45.7 mm Inner Diameter: 30.0 mm Thickness: 3.0 mm
2. Place them to the transaxle housing.

3. Apply ATF to the outer periphery of bearing cylindrical roller.
4. Tap the bearing, using the following SST.

SST: 09351-87712-000

5. Tighten the retainer roller bearing with a bolt.

Tightening Torque: $9.8-15.7 \mathrm{~N} \cdot \mathrm{~m}$

$$
(1.0-1.6 \mathrm{kgf}-\mathrm{m}, 7.2-11.6 \mathrm{ft}-\mathrm{lb})
$$

6. Install the tube transaxle lub apply and clamp.
7. Tighten them with a bolt.

Tightening Torque: $3.9-6.9 \mathrm{~N} \cdot \mathrm{~m}$
($0.4-0.7 \mathrm{kgf}-\mathrm{m}, 2.9-5.1 \mathrm{ft}-\mathrm{lb}$)
8. Tighten the plate oil reserver (with three magnets ... A installed) with the three bolts.

Tightening Torque: $3.9-6.9 \mathrm{~N} \cdot \mathrm{~m}$
($0.4-0.7 \mathrm{kgf-m}, 2.9-5.1 \mathrm{ft}-\mathrm{bb}$)

TRANSAXLE CASE

Removal

1. Remove the bearing cylindrical roller, using the following SST.

SST: 09351-87703-000, 09351-87706-000

NOTE:

- Never reuse the removed bearing.

Installation

1. Apply AFT to the outer periphery of bearing cylindrical roller.
2. Tap the bearing, using the following SST.

SST: 09351-87712-000

INSTALLATION

1. Apply lithium base multi purpose grease to the new ois seal lip section.
2. Install the new oil seal.
3. Insert the shaft subassembly manual valve lever to the transaxle case.
4. Install the new spacer and lever manual valve to the shaft subassembly manual valve lever.
5. Install the new slotted spring pin.

Rotates the new spacer approximately 180 degree.
Stake the small hole of the new spacer.
8. Press the outer race, using the following SST. SST: 09351-87720-000
9. Install the ring shaft snap to the bearing tapered roller.
10. Measurement of starting torque
(1) Install the new spacer counter bearing to the gear counter drive.
(2) Apply ATF to the bearings tapered roller.
(3) Install the gear counter drive to the transaxle case.
(4) With used the following SST, press (1.9 ton) the bearing tapered roller.
SST: 09351-87713-000 ... (A) 09351-87717-000 ... (B)
(5) Stop the press and rotates the transaxle case several times so as to stabilize the tapered roller bearing.
(6) Clamp the SST (09351-87717-000) in a vice.
(7) With the new lock nut used, tighten them, using the following SST.
SST: 09351-87718-000
Tightening Torque: $490.0 \mathrm{~N} \cdot \mathrm{~m}$ ($50.0 \mathrm{kgf}-\mathrm{m}, 361 \mathrm{ft}-\mathrm{lb}$)

NOTE:

- For easing tighten the lock nut, it is recommended to use the power torque wrench for tightening.

(10) Hook the push-pull gauge or the like in the bolt hole section of the transaxle case.
(11) Measure the rotational torque of the transaxle case. Specified Value:
$0.078-0.21 \mathrm{~N} \cdot \mathrm{~m}$
($0.008-0.022 \mathrm{kgf}-\mathrm{m}, 0.057-0.15 \mathrm{ft}-\mathrm{lb}$)

(13) Remove the SST (09351-87713-000 and 09351-87717000) from the vice.
(14) Measure the starting torque of the gear counter drive, using the following SST.
SST: 09351-87718-000
Specified Value:
$0.049-0.39 \mathrm{~N} \cdot \mathrm{~m}$
($0.005-0.04 \mathrm{kgf}-\mathrm{m}, 0.036-0.28 \mathrm{ft}-\mathrm{lb}$)

(15) Stake a new lock nut, using a standard punch in combination with a hammer.

NOTE:

- When staking the lock nut, point a suitable staking tool toward the shaft axis center and stake the lock nut securely, as shown in the figure below. (Poor staking may cause abnormal noise.)

11. Coat the new O-rings with ATF.
12. Place the piston 1st \& reverse brake with the O-rings installed.
NOTE:

- Be careful not to twist or divide the O-rings during installation of piston.

13. Place the spring subassembly brake piston return.
14. Install the ring retainer by compressing the spring subassembly brake piston return with the flat drivers or the like.

\therefore Install the brake flange (A). disc/clutch \& plate (P), plate

- brake (B) and flange brake (B) in the following order.
$\mathrm{F}(\mathrm{A}) \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{D} \rightarrow \mathrm{F}(\mathrm{B})$

16. Install the ring hole snap.

NOTE:

- Make sure that the opening end of snap ring should be aligned with the protrusion of the transaxle case.

17. Measure the piston 1st \& reverse brake stroke by applying and releasing the compressed air $392-784 \mathrm{kPa}$ (4 - 8 $\mathrm{kg} / / \mathrm{cm}^{2}$, 56-113 psi) through oil hose section (A), using the following SST.

SST: 09351-87210-000
Specified Value: $1.40-2.20 \mathrm{~mm}$
18. Place the spring compression for 2 nd \& 4th brake into the transaxle case.
19. Apply ATF to the new O-rings.
20. Insert the removed lock plate with following SST to the piston 2nd \& 4th brake, cover brake piston (new O-rings installed to the transaxle case).
21. Install the piston 2nd \& 4th brake, cover brake piston with the ring hole snap by tightening the SST. (Never use the air impact wrench for tightening the SST)

SST: 09351-87709-000, 09351-87710-000
22. Temporarily install the piston rod with lock plate, new lock washer and lock nut to the transaxle case.
NOTE:

- It is recommended to protrude (approx: 2-3 mm) the head section of piston rod at the inner side of transaxle case.

Unit: mm
Pin Dimension:

	(A)	(B)
Outer diameter	10.0	12.0
Length	33.7	45.9

23. Apply ATF to the outer periphery of the three rollers.
24. Insert the rollers to the transaxle case.

GAT00371-99999
25. Apply ATF to the tube transaxle lub apply.
26. Install the tube transaxle lub apply.
27. Tighten the clamp with a bolt.

Tightening Torque: $3.9-6.9 \mathrm{~N} \cdot \mathrm{~m}$ (0.4-0.7 kgf-m, $2.9-5.1 \mathrm{ft}-\mathrm{lb}$)
28. Install the band assembly 2nd \& 4th brake.
29. Install the 1 st \& reverse clutch assembly.
30. Temporarily tighten the six bolts of the body oil pump with your fingers.
31. Temporarily tighten the transaxle housing to the transaxle case with the 5 to 6 bolts.

12. Stand the transaxle (ie: transaxle housing faces toward the down side).
33. Install the front and rear planetary carrier while rotating counterclockwise and clockwise.
34. Install the sun gear with needle roller bearing.

Bearing Race Dimension: Approx.
Outer Diameter: 32.2 mm
Inner Diameter: 18.9 mm
Thickness: 2.6 mm
32. Coat a race with vaseline.
33. Install the race to the 1 way clutch.
34. Install the overdrive/coast clutch assembly while rotating counterclockwise and clockwise.
NOTE:

- Ensure that the overdrive/coast clutch locked when turns counterclockwise (A) and freely when turned clockwise (B).

35. Install the forward clutch assembly while rotating.
36. Apply following sealer gasket to the contacting surface of the transaxle case.

Sealer Gasket: Three Bond 1281 (Three Bond made)
37. Install the new four gaskets 2nd brake apply and a gasket governor apply.
NOTE:

- There are no installation direction of new gaskets.

38. Tighten the transaxle rear cover with the ten (two ... new bolts ... (A)) bolts.

Tightening Torque: $19.6-29.4 \mathrm{~N} \cdot \mathrm{~m}$ (2.0-3.0 kgf-m, $14.5-21.7 \mathrm{ft}-\mathrm{lb})$
39. Turn over the transaxie.
40. Remove the transaxle housing.
41. Remove the body oil pump, 1st \& reverse clutch and band assembly 2 nd $\& 4$ th brake from the transaxle case.

42. Apply ATF to the race with integrated needle roller bearing.
43. Install them to the transaxle case.

Race Dimension: Approx.
Outer Diameter: 65.8 mm
Inner Diameter: 51.0 mm
Thickness: 2.7 mm
44. Install the gear assembly counter driven.
45. Install the rod parking lock with pawl parking lock, bracket parking lock pawl and spring torsion.
46. With the spacer and torsion spring installed a bolt, tighten the bracket parking lock pawl.

Tightening Torque: $7.8-11.8 \mathrm{~N} \cdot \mathrm{~m}$ ($0.8-1.2 \mathrm{kgf}-\mathrm{m}, 5.8-8.7 \mathrm{ft}-\mathrm{lb}$)
47. Insert the rod parking lock to the bracket parking lock pawl and connect the rod parking lock with lever manual valve.
48. Install the band assembly 2nd \& 4th brake.
49. Install the 1 st $\&$ reverse clutch assembly while rotating counterclockwise and clockwise.
50. Tighten the spring manual detent with the two bolts.

Tightening Torque: $7.8 \cdot 11.8 \mathrm{~N} \cdot \mathrm{~m}$
($0.8-1.2 \mathrm{kgf-m}, 5.8-8.7 \mathrm{ft}-\mathrm{lb})$
NOTE:

- It is recommended to set the neutral position between spring detent and lever manual valve and then firstly tighten the bolt (A) and (B).

51. Install the strainer subassembly oil.
52. Tighten the plate oil reserve with the two bolts.

Tightening Torque: $3.9-6.9 \mathrm{~N} \cdot \mathrm{~m}$
(0.4-0.7 kgf-m, 2.9-5.1 ft-lb)

GAT00380.99999

GAT00382-99999

GAT00383-99999

3. Adjustment of rod 2nd \& 4th brake piston
(1) Fully tighten the rod piston with your hand.
(2) Loosen the rod piston for counterclockwise 3 to 3.3 turns (A).
(3) Tighten the lock nut.

Tightening Torque: $17.6-23.5 \mathrm{~N} \cdot \mathrm{~m}$
($1.8-2.4 \mathrm{kgf}-\mathrm{m}, 13.0-17.4 \mathrm{ft}-\mathrm{lb}$)
(4) Stake the new lock plate along with the nut.
(5) Coat a new O-ring with ATF.
(6) Install them to the cover brake.
(7) Install the cover brake to the transaxle case with the ring hole snap, using the snap ring plier.
54. Install the new two gaskets governor apply and a gasket governor apply.
55. Install the gear assembly differential.
56. Wipe off and clean the contacting surface between case and housing.
57. Tighten the body oil pump with the six bolts.

Tightening Torque: $19.6-29.4 \mathrm{~N} \cdot \mathrm{~m}$

$$
\text { (2.0-3.0 kgf-m, } 14.5-21.7 \mathrm{ft}-\mathrm{lb})
$$

58. Apply following sealer gasket to the transaxle case as shown in the right figure illustration.

Sealer Gasket: Three Bond 1281 (Three Bond made)
59. Tighten the transaxle housing to the transaxle case with 15 bolts.

Tightening Torque: $23.5-35.3 \mathrm{~N} \cdot \mathrm{~m}$
(2.4-3.6 kgf-m, $17.4-26.0 \mathrm{ft}-\mathrm{lb})$

NOTE:

- Ensure the (A) section of two bolts should be used with new one.

AT-122

60. Insert the wiring harness of the solenoid connectors.
61. Coat the two gaskets governor apply with ATF and place them as right figure illustration.

GATO0390-99999

GATC0424.99999

-n Coat the new O-rings with ATF.
Tighten the following parts (ie: new O-rings installed) with the bolts.
(1) Solenoid coupler
(2) Vehicle speed sensor
(3) C1 cylinder revolution sensor
(4) Transmission fluid level tube

Tightening Torque: $3.9-6.9 \mathrm{~N} \cdot \mathrm{~m}$ ($0.4-0.7 \mathrm{kgf}-\mathrm{m}, 2.9-5.1 \mathrm{ft}-\mathrm{lb}$)

72. Place the sleeve lock plate.
73. Coat a new O-ring with ATF.
74. Tighten the gear speedometer driven (new O-ring installed) with a bolt.

Tightening Torque: $9.8-13.7 \mathrm{~N} \cdot \mathrm{~m}$

$$
(1.0-1.4 \mathrm{kgf}-\mathrm{m}, 7.2-10.1 \mathrm{ft}-\mathrm{lb})
$$

Install the neutral start switch assembly.
ro. Place the new gasket and new lock washer on the neutral start switch.
77. Tighten the lock nut.

Tightening Torque: $5.9-7.8 \mathrm{~N} \cdot \mathrm{~m}$

$$
(0.6-0.8 \mathrm{kgf}-\mathrm{m}, 4.3-5.8 \mathrm{ft}-\mathrm{lb})
$$

78. Adjust the neutral start switch assembly (see page AT-13).
79. Temporarily tighten the neutral start switch.
80. Tighten the control lever with a spring washer and nut.

Tightening Torque: $15.7-23.5 \mathrm{~N} \cdot \mathrm{~m}$

$$
(1.6-2.4 \mathrm{kgf}-\mathrm{m}, 11.6-17.4 \mathrm{ft}-\mathrm{lb})
$$

81. Install the automatic transmission to the vehicle (see page AT-56 to AT-67).
82. Fill the new ATF.

Fluid To Be Used: DEXRON ${ }^{\star}$ II
Capacity: 5.7ℓ (Full), 3.2ℓ (Drain and refill)

SST

It should be noted that 09350-87704-000 contains SSTs other than those posted in this section.

Shape	Part No.	Part name
	$09842-87501-000$	Sub-harness, EFI E.C.U check

Shape	Part No.	Part name
(5)	09518-87701-000	Replacer, oil seal No. 1
	09351-87703-000	Puller, transmission bearing
	09351-87704-000	Stopper, transmission bearing puller
θ	09351-87705-000	Plate, disc bearing
0	09351-87706-000	Guide, bearing
	09351-87707-000	Compressor, piston spring No. 1
	09351-87708-000	Compressor, piston spring No. 2
\%	09351-87709-000	Rod, brake piston
	09351-87710-000	Plate, brake piston
	09351-87711-000	Adapter, differential preload
	09351-87712-000	Plate, disc
	09351-87713-000	Replacer, bearing No. 1

SERVICE SPECII:umiu.v

Item (Unit: mm)		Specified value	Allowable limit
Run out of drive plate		0.25	-
Run out of torque converter at sleeve section		0.30	-
Oil pump clearance	Body	0.075-0.15	0.3
	Tip	0.004-0.248	0.3
	Side	0.02-0.05	0.1
Piston stroke	Forward	0.76-1.44	
	Overdrive	0.75-1.05	-
	Coast	2.68-3.02	-
	Reverse (Pack clearance)	$0.64 \cdot 1.50$	-
	1st \& reverse	1.40-2.20	-
	2nd \& 4th brake	3.0-3.4	-
eturn spring with seat free ength	Forward	22.0	
	Coast	18.9	
	Reverse	18.7	
Counter drive gear starting torque	Lock nut side	$0.49-3.9 \mathrm{~N} \cdot \mathrm{~m}(0.5-4.0 \mathrm{kgf-cm}, 0.36-0.39 \mathrm{ft}-\mathrm{lb})$	
	Case side	$0.78-2.1 \mathrm{~N} \cdot \mathrm{~m}(0.8 \cdot 22.0 \mathrm{kgf}-\mathrm{cm} .0 .57-1.59 \mathrm{ft}-\mathrm{lb})$	
Differential	Side gear backlash	0.06-0.22	-
	Starting torque	$0.78-1.01 \mathrm{~N} \cdot \mathrm{~m}(0.8-1.4 \mathrm{kgf}-\mathrm{cm}, 0.57-1.01 \mathrm{ft}-\mathrm{lb})$	
Stall revolution speed (rpm)		2180 ± 150 for HC-E	
		2500 ± 150 for HC-C	
Time lag (second)	N to D	Less than 0.7	
	N to R	Less than 1.2	
Lubrication pressure (idiling) ... D range: kPa ($\left.\mathrm{kgf/cm}{ }^{2}, \mathrm{psi}\right)$		More than $78(0.8,11)$	
Drange $\mathrm{kPa}\left(\mathrm{kg} / / \mathrm{cm}^{2}, \mathrm{psi}\right)$		Idling	Stall
	Line pressure	$372-421$ (3.8-4.3, 54-61)	$\begin{gathered} 1019-1196 \\ (10.4-12.2,147-173) \end{gathered}$
	Forward	343-421 (3.5-4.3, 49-61)	$\begin{gathered} 1029 \cdot 1196 \\ (10.5-12.2,149-173) \end{gathered}$
	Coast	343-421 (3.5-4.3, 49-61)	$\begin{gathered} 1029-1196 \\ (10.5-12.2,149-173) \end{gathered}$
	Throttle	39-63 (0.4-0.65, 5.6-9.2)	402-451 (4.1-4.6.58-65)
R range $\mathrm{kPa}\left(\mathrm{kg} / / \mathrm{cm}^{2}, \mathrm{psi}\right)$	Line pressure	539-627 (5.5-6.4, 78-91)	$\begin{gathered} 1343-1618 \\ (13.7-16.5,194-234) \end{gathered}$
	Coast	382-431 (3.9-4.4, 55-62)	382-431 (3.9-4.4, 55-62)
	Throttle	$39-63(0.4-0.65,5.6-9.2)$	402-451 (4.1-4.6.58-65)
Applying pressure in 2nd gear $\quad \mathrm{kPa}\left(\mathrm{kgf}^{2} / \mathrm{cm}^{2} . \mathrm{psi}\right)$	D range	343-421 (3.5-4.3, 49-61)	
	2nd range	More than $343(3.5,4.9)$	
Reieasing pressure 3rd gear in D range $\mathrm{kPa}\left(\mathrm{kg}_{\mathrm{g} / \mathrm{cm}^{2}}\right.$. psi$)$	Overdrive clutch	343-421 (3.5-4.3, 49-61)	
	2nd \& 4th brake	343-421(3.5-4.3, 49-61)	

AT-128

TIGHTENING TÓnuue

Tightening components	Tightening torque		
	N.m	kgf-m	ftib
Transaxle housing \times Transaxle case	23.5-35.3	2.4-3.6	17.4-26.0
Transaxle case \times Transaxle side cover	19.4-29.4	1.99-3.0	13.7-21.7
Transaxle case \times Rear cover	19.6-29.4	2.0-3.0	14.5-21.7
Oil pump body assembly \times Transaxle case	19.6 - 29.4	$2.0-3.0$	14.5-21.7
Transaxle housing \times Inspection plugs	5.9-8.8	0.6-0.9	4.3-6.5
Transaxle housing \times Drain plug	23.5-54.9	2.4-5.6	17.4-40.5
Neutral start switch \times Transaxle case	19.6-29.4	2.0-3.0	14.5-21.7
Control cable \times Control shaft lever	19.6-41.2	2.0-4.2	14.5-30.4
Transmission floor shift assembly \times Nut	9.8-15.7	1.0-1.6	7.2-11.6
Oil reserver plate \times Transaxle case	$3.9-6.9$	0.4-0.7	2.9-5.1
Parking lock pawl bracket \times Transaxle case	7.8-11.8	0.8-1.2	$5.8-8.7$
Detent spring \times Transaxle case	7.8-11.8	0.8-1.2	$5.8-8.7$
Bearing stopper \times Transaxle housing	9.8-15.7	1.0-1.6	7.2 - 11.6
Oil reserver plate \times Transaxle housing	3.9-6.9	0.4-0.7	2.9-5.1
Tube clamp \times Transaxle housing	$3.9-6.9$	$0.4-0.7$	2.9-5.1
Tube clamp \times Transaxle case	3.9-6.9	0.4-0.7	$2.9-5.1$
Transaxle case \times Inspection plugs	5.8-8.8	0.6-0.9	4.3-6.5
Oil pump cover \times Oil pump body	9.8-13.7	1.0-1.4	7.2-10.1
Front vaive body \times Transaxle case	7.9-11.8	$0.8 \cdot 1.2$	5.8-8.7
Suction cover \times Front valve body	7.9-11.8	0.8-1.2	5.8-8.7
Lock up solenoid bracket \times Front valve body	7.9-11.8	0.8-1.2	5.8-8.7
Rear valve body cover \times Rear valve body	7.9-11.8	0.8-1.2	5.8-8.7
Valve body related other than above	5.9-7.4	0.6-0.75	4.3-5.4
Differential ring gear \times Differential case (w/wet condition)	90.2-102.9	9.2-10.5	66.5-75.9
Rear cover \times Inspection plugs	$5.9 \cdot 8.8$	0.6-0.9	4.3-6.5
Counter drive gear \times Lock nut	490	50	361
Counter diriven gear \times Lock nut (for sensor)	147.0-177.0	15.0-18.0	109.0-130.0

DAIHATSU

G200, G201

CHASSIS

HARNESS \& WIRING

GENERAL INFORMATION HW- 2
LOCK TYPE CONNECTORHW- 2
TERMINAL REMOVALIINSTALLATION HW- 3
PIN NUMBER OF CONNECTOR HW- 4
OPERATION OF WIRE HARNESS HW- 4
WIRING HARNESSES HW- 6
INSPECTION OF CIRCUIT WITH TESTER HW- 7
INSPECTION OF SHORT CIRCUIT HW- 7
JUNCTION BLOCK (Main fuse block) HW- 8
SCHEMATIC DIAGRAM OF WIRING
HARNESSES HW- 9
WIRING DIAGRAM HW-10
STARTER AND ALTERNATOR HW-10
IGNITION COIL AND IDLE UP HW-11
HORN, TURN \& HAZARD AND BACK UP LAMP HW-12
METER HW-13
WIPER \& WASHER, DEFOGGER AND HEATER HW-14
DAY LIGHT, HEADLAMP. HEADLAMP LEVELING AND DIM-DIP HW-15
TAIL LAMP AND INDEPENDENT TAIL FUSE HW-16
COURTESY LAMP, A/T SHIFT LOCK AND STOP LAMP HW-17
POWER WINDOW. CANVAS TOP AND DOOR LOCK HW-18
ENGINE ECU HW-19
4 A/T ECU HW-20
ABS ECU HW-21
CIGARETTE LIGHTER. CLOCK AND
HEADLAMP CLEANER HW-22
AIR CONDITIONER HW-23
RADIO AND REMOTE CONTROL MIRROR HW-24
WIRE COURTESY LAMP FEED HW-25
WIRE, FRONT DOOR RH (Driver's side) HW-26
WIRE, FRONT DOOR LH (Passenger's side) HW-27
WIRE, FRONT DOOR RH (Passenger's side). HW-28
WIRE, REAR DOOR LH HW-29
WIRE. REAR DOOR RH HW-30
WIRE, BACK-DOOR NO. 1 HW-31
WIRE, BACK-DOOR NO. 3 HW-32
WIRE, INTERIOR LAMP FEED HW-33
WIRE CONNECTION, ENGINE, EFI HW-34
WIRE CONNECTION, ENGINE, CARB. HW-36
WIRE CONNECTION, COWL, EFI L.H.D. (EC Spec.) HW-37
WIRE CONNECTION, COWL, EFI R.H.D HW-42 HW-42
WIRE CONNECTION. COWL, CARB. L.H.D HW-47
WIRE CONNECTION. COWL. CARB. R.H.D. HW-51
WIRE CONNECTION. INSTRUMENT PANEL HW-55
WIRE CONNECTION, FLOOR HW-56
WIRE CONNECTION. COURTESY LAMP FEED HW-57
WIRE CONNECTION, FRONT DOOR RH
(Driver's side) HW-58
WIRE CONNECTION, FRONT DOOR LR
(Passenger's side) HW-59
WIRE CONNECTION, FRONT DOOR RH
(Passenger's side) HW-60
WIRE CONNECTION, REAR DOOR LH HW-61
WIRE CONNECTION, REAR DOOR RH HW-62
WIRE CONNECTION, BACK DOOR NO. 1 HW-63
WIRE CONNECTION, BACK DOOR No. 3 HW-64
WIRE CONNECTION, INTERIOR LAMP FEED HW-65
WIRE. ENGINE, EFI HW-66
WIRE, ENGINE. CARB HW-67
WIRE, COWL, EFI L.H.D. (EC Spec.) HW-68
WIRE. COWL, EFI R.H.D. HW-69
WIRE, COWL, CARB. L.H.D. HW-70
WIRE, COWL. CARB R.H.D HW-71
$H W-72$
WIRE, FLOOR HW-73

GENERAL INFORMATION

LOCK TYPE CONNECTOR

PRECAUTION:

- Disconnection and connection of each connector should be kept at a minimum level. If unnecessary disconnection or connection is repeated, it may cause unexpected troubles such as poor continuity and chattering.

GHWO0002-00000

DISCONNECTION

The lock type of the connector comes in a push release type, a pull release type, a spring lock type, an one-way lock type and so on.
After confirming the shape of the lock, unlock the lock. Disconnect the connector while holding the connector by hand.
NOTE:

- Never pull the harness during the disconnection.
- Be sure to pull out the connector straight so as not to damage the terminal.

CONNECTION

Perform the connection until the lock is completely engaged.
After the connection has been made, ensure that the lock is engaged positively.
NOTE:

- Be sure to connect the connector straight so as not to damage the terminal.

INSPECTION

Tester (Volt/ohmmeter)

For the inspection, use a tester having an internal resistance of more than $10 \mathrm{kw} / \mathrm{V}$.
Use of a tester with a low internal resistance may cause wrong measurement or secondary troubles.

Sonventional type connector
When resistance measurement and/or voltage measurement is conducted at the connector section, insert the measuring probe from the back of the connector, being very careful not to damage the harness-to-terminal connections.

Water-proof type connector

When resistance measurement and/or voltage measurement is conducted at the connector section, bring the measuring probe into contact with the terminal at the connection side of the connector.
Be very careful not to apply excessive force to the terminal at the connector side. Failure to observe this caution may deform the terminal, causing poor continuity.
As an alternative method, insert a male or female terminal into the connector terminal or connect an adequate attachment. Then, connect the measuring probe.

TERMINAL REMOVAL/INSTALLATION

Gemoval of terminal

Housing lance type>
Insert a miniature screwdriver through the opening section of the connector into between the locking lug and the terminal. While prying up the locking lug with the screwdriver, pull the terminal backward.
<Metal lance type>
While pushing the lance with the screwdriver, pull the terminal backward.

GHW00006-99999

Installation of terminal

<Housing lance type>

Push the terminal into the protruding section of the connector, until the lock is engaged completely.
Lightly pull the harness to assure that the locking has been made completely.
<Metal lance type>
Insert the terminal into the connector, until lance is locked completely.
Lightly pull the harness to assure that the locking has been made completely.

PIN NUMBER OF CONNECTOR

(1) Pin number of female connector

The numbering is made in sequence from the left/upper position to the right/under position.
(2) Pin number of male connector

The numbering is made in sequence from the right/upper position to the left/under position.

OPERATION OF WIRE HARNESS

1. General instructions
(1) Never pull the connectors or step on them during the wire harness transport or assembly.
(Prevention of pulling-out of terminals, connector cracks, deformation and so forth)
(2) Care must be exercised to ensure that no scratch is made to the wire harness by burrs or edges during the wire harness transport or assembly.
(Prevention of scratches to the outer trim, electrical insulators and so forth)
(3) Clamping method

In the case of resin clamps, ensure that the clamp section is fitted in the body hole.
NOTE:

- Ensure that the clamp will not be detached when it is pulled lightly in the arrow-headed direction.
(Prevention of interference due to the detachment of the clamp)
- In the case of metal sheet welded clamps, be sure to assemble the harness in such a way that the harness will not come in contact with the welded surface.
(Prevention of wire harness damage due to welding burs)

GHW00011-00000

- In case that the locating guide of the clamp position or the clamp mark is clamped, make sure that the clamp is located within the guide. As for the clamp at the clamp mark section, ensure that the clamping is made at a point within $\pm 10 \mathrm{~mm}$ (0.39 inch).
(Prevention of slackness or interference)
(4) Terminals and connectors

Perform the connection of connectors positively.

- Connector with lock \qquad Ensure that the locking is made.
- Connector without lock Connect the connector positively until it stops.

Retention by screws

- When the tightening torque is specified, be sure to observe the specification strictly.
(The tightening torque is posted in the table separately.)
- Ensure that the staked section may not come on the assembling surface.
- After completion of the tightening operation, lightly pull out the terminal. Ensure that there is no slackness.
- When performing other operations, care must be exercised to ensure that no connected connector is detached by pulling out the wire harness forcibly.

2. Work procedure for tightening-up type resin ciamps
<Work procedure>
When the tightening-up type resin clamps are employed, do not use any pliers, cutting pliers or the like.
<Reason>
Prevention of clamps being cut or scratched

WIRING HARNESSES

WARNING:

- The wire diameter and capacity of each harness have been determined to assure the normal operation of the electrical system.
- Hence, do not take power for accessories carelessly through the original wiring harness. Failure to observe this caution may cause system malfunction or fire.

Wiring color code

- For identification purpose, each wire has its own color. Each color bears a code as described in the right table. These codes are used in the wiring diagram and will be helpful during trouble shooting.

Code	Gr	Br	B
Color	Gray	Brown	Black
Code	W	R	G
Color	White	Red	Green
Code	Y	L	O
Color	Yellow	Blue	Orange
Code	P	Lg	V
Color	Pink	Light green	Violet

- The wire color comes in two kinds: single color and composite color. In the case of single color, the whole outer coat of the harness is of a single color.
In the case of composite color, a fine line of the second color is drawn on the harness basic color.
In this case, the code is composed of the basic color code which comes first and the second color code which comes after a hyphen.

'NSPECTION OF CIRCUIT WITH TESTER

If a diode is built in the circuit, perform continuity test by changing the polarities of the measuring terminals.
In case of a general type tester, ensure that continuity exists when the negative $(-)$ lead of the tester is connected to the positive (+) side of the diode; the positive (+) lead of the tester to the negative $(-)$ side of the diode. Also ensure that no continuity exists when the polarities are changed.

Since some testers have different polarities, be sure to read the instruction manual of a tester to be used for the check before using it.

The inspection procedure for light emitting diodes (LED) is the same as normal diodes. However, there may be cases where the LED emits no light, unless a tester with LED check mode is used. If an adequate tester is not available, apply the battery voltage to the LED and ensure that the LED emits light.

INSPECTION OF SHORT CIRCUIT

(1) Remove a melt fuse or fusible link.
(2) Disconnect all connectors for loads being applied to the melt fuse.
(3) Connect a test lamp at the position where the melt fuse or fusible link was installed.
(4) Search for the sort circuit by providing the minimum conditions which make the test lamp glow.

Example

Short section	Connecting conditions
(A)	Ignition switch is turned ON.
(B)	Ignition switch and switch (A) are turned ON.
(C)	Ignition switch, switch (A) and (B) are turned ON with relay energized.

(5) Perform repairs or wiring harness replacement, as required.

GHWOOO24-00000

Example

JUNCTION BLOCK (Main fuse block)

The junction block assembly is located underneath the instrument panel at the driver's foot side.

Fuse check and replacement

1. Turn the ignition switch off and remove the fuse box lid.
2. Make sure that the switch of the malfunctioning component is off.
3. Attach the fuse puller and pull out the fuse.
4. When replacing a fuse with a new one, be sure to install a fuse having a capacity specified at the caution plate.
NOTE:

- The fuse puller is provided at the junction block.
- The fuse position should be checked by holding the caution plate.

1. Defogger
2. Engine 20A
3. Radio 15A
4. Starter 10A (For HC-E \& HD-E engine)
5. Turn signal lamp 15A
6. Horn Hazard 15A
7. Wiper 15 A
8. Tail lamp (Left) 15A (For Germany) Fog 10A (For HC-E \& HD-E engine)
9. Gauge 10A
10. Tail lamp (Right) 10A (For Germany) Tail lamp 15A (Except for Germany)
11. Cigarette lighter 10A
12. Spare 20A
13. Spare 15A
14. Spare 10A
15. Headiamp (Left) 15A
16. Headlamp (Right) 15 A
17. Ignition 120 A
18. Heater 30 A
19. Stop lamp 15A
20. Dome 15A
21. Ignition 2 15A
22. Power No. 2 30A
23. Power No. 1 20A

SCHEMATIC DIAGRAM OF WIRING HARNESSES

HW-10
WIRING DIAGRAM
STARTER AND ALTERNATOR

GNITION COIL AND IDLE UP

AETER

WIPER \& WASHER, DEFOGGER AND HEATER

TAIL LAMP AND INDEPENDENT TAIL FUSE

COURTESY LAMP, A/T SHIFT LOCK AND STOP LAMP

POWER WINDOW, CANVAS TOP AND DOOR LOCK

ENGINE ECU

4 A/T ECU

ABS ECU

CIGARETTE LIGHTE

IR CONDITIONER

RADIO AND REMOTE CONTROL MIRROR

WIRE, FRONT DOOR RH (Driver's side)

HW-28
WIRE, FRONT DOOR RH (Passenger's side)

WIRE, REAR DOOR LH

WIRE, BACK-DOOk ivu. :

\qquad

High-mount stop lamp

$$
\begin{aligned}
& \text { TO WIRE, BACK DOOR No. } 4 \\
& \text { Back door earth }
\end{aligned}
$$

HW-34

WIRE CONNECTION, ENGINE, EFI

From		To	
Location	Terminal	Terminal	Location
ATT ECU (E01)	2168		Connect to -W226
Back-up lamp RH (-)	G15	G2	Back-up lamp SW (+)
Body earth	Z3	63	Back-up lamp SW (-)
Meter (0il pressure)	H5	H6	Oil pressure SW
Meter (Thermo. gauge)	H20	H21	Thermo. sender
Connect to $\mathrm{N} 31 \sim 019$	N31	K18	A/C VSV (+)
A/C relay No. 2 coil (-)	K156	K96	A/C coolant temp. SW
A/C amp.	K133	K188	A/C cul SW
Radiator fan relay coil (-)	14	L2	Radiator fan SW
IG SW (ST)	M1	M2	Starter (ST)
Neutral start SW (-)	M4	M2	Starter (ST)
IG SW (ST)	M1	M3	Neutral start SW (+)
Battery (+)	M13	M12	Starter (+B)
Battery (+)	M13	M12	Starter (+B)
IG coil (IG -)	N17	N8	Ignitor (IG) $^{\text {d }}$
Ignitor (IGI)	N16	N17	EFI ECU (IGI)
Ignitor (IGf)	N18	N19	EFI ECU (IGf)
Distributor (Ne)	N25	N26	EFI ECU (Ne)
Fuse, IG2 (-)	N33	N37	Ignitor (Power source)
Connect to Z48-249	248	N46A	Ignitor shielded meshed wire
		N46B	Ignitor shielded meshed wire (Separation)
Distributor ($\mathrm{N}-\mathrm{-}$)	N47	N48	EFIECU ($\mathrm{N} \rightarrow$)
Alternator (+B)	013	012	IG SW (AM)
Fuse, engine (-)	N31	019	Alternator (IG)
Meter (Charge)	020	021	Alternator (L)
$\mathrm{R} / \mathrm{B}(\mathrm{ECU}+\mathrm{B})$	039	040	EFIECU (+ B1)
Connect lo 039-040	039	041	EFI ECU (+B2)
Alternator (+ B)	013	062	F/L 1.25 (-)
F/L (Battery)	08	063	F/L 1.25 (+)
EFI ECU (ALT2)	$\times 195$	098	Alternator (C)
F/L 2.0 Battery	011	099	R/B power source 1
Connect to 011~099	011	0100	R/B power source 2
EFI ECU (PST)	X197	P3	P/S pressure SW
A/ indicator (L)	H24	W9	Shifl position SW (L)
A/T indicator (2)	H25	W11	Shift position SW (2)
A/T indicator (D)	H26	W13	Shift position SW (D)
AT indicator (N)	H27	W15	Shifl position SW (N)
AT indicator (P)	H29	W18	Shift position SW (P)
AT ECU (S1)	W27	W28	Shift solenoid No. 1
ATT ECU (S2)	W29	W30	Shitt solenoid No. 2
AT ECU (SL)	W136	W202	L-UP control solenoid
ATT ECU (STH +)	W203	W204	Pressure control solenoid (+)
A/T ECU (STH -)	W205	W206	Pressure control solenoid (-1
AT ECU ($\mathrm{NC}+$)	W218	W220	Cylinder revolution sensor (NC +)

Fiom		T0	
Location	Termínal	Terminal	Location
ATECU (NC -)	W219	W221	Cylinder revolution sensor (NC -)
Connect to $\mathrm{Z168}$ -	2168	W226	Vehicle soeed sensor shielded meshed wire
Connect to Z168-	2168	W228	Revolution speed sensor shieided meshed wire
A/T ECU (SPD +)	W230	W231	Vehicle soeed sensor (SPD1 +)
ATT ECU (SPD -)	W217	W232	Vehicle speed sensor (SPD1-)
EFI ECU (02)	X27	X28	O_{2} sensor
EFI ECU (THW)	$\times 29$	$\times 30$	Water temp. sensor (+)
Connect to X35~339	$\times 35$	X31	Water lemp. sensor (-)
EFIECU (THA)	X32	$\times 33$	Intake air temp. sensor $(+)$
Connect to X35-x39	X35	$\times 34$	Intake air sensor (-)
EFIECU (E2)	X35	$\times 39$	Throtlie sensor (E2)
EFIECU (IDL)	$\times 36$	$\times 40$	Throtle sensor (Idie)
EFI ECU (VTH)	$\times 37$	X41	Throttle sensor (VTH)
Connect to X38->46	X38	X42	Throtile sensor (VCC)
EFIECU (E21)	X99	X44	Pressure sensor (E21)
EFIECU (PIM)	X43	X45	Pressure sensor (PIM)
EFI ECU (VCC)	$\times 38$	X46	Pressure sensor (VCC)
Connect to 039-040	039	$\times 50$	Injector No. 1 (+)
EFIECU (\$10)	X56	$\times 51$	Injeclor No. $1(-)$
Connect to-x50	$\times 50$	X52	injector No. $2(+)$
Connect to $\times 56-\times 51$	$\times 56$	X53	Injector No. $2(-)$
Connect to $\sim \times 50$	X50	X 54	Injector No. 3 (+)
Connect to $\times 56-\times 51$	$\times 56$	X55	Injectior No. 3 (-)
Connect lo 248-249	248	X85A	O_{2} sensor shielded meshed wire
		$\times 858$	O_{2} sensor shielded meshed wire (Separation)
Connect to - $\times 85$	X85	X86A	Pressure sensor shielded meshed wire
		X868	Pressure sensor shielded meshed wire (Separation)
Connect to N31-019	N31	X89	EGR VSV (+)
EGR VSV (-)	X90	$\times 91$	EFI ECU (EVSV)
Connect to - $\times 50$	$\times 50$	X97	Injector No. 4 (+)
Connect to $\times 56 \sim \times 51$	X56	$\times 98$	Injector No. $4(-)$
Connect to - $\times 85$	X85	X101A	Distributor shielded meshed wire
		X1018	Distributor shieided meshed wire (Separation)
Conned to $\mathrm{H} 29-\mathrm{W} 18$	H29	X183	EFI ECU (P)
Connect 10 H27-W15	H27	X184	EFI ECU (N)
AT ECU (VCCO)	W233	X190	EFI ECU (VCCO)
A/T ECU (WT)	W42	X191	EFI ECU (THWO)
AT ECU (VTHO)	W235	X192	EFI ECU (VTHO)
ATT ECU (E20)	W236	X193	EFI ECU (E20)

From		T0	
Location	Terminal	Terminal	Location
Connect to 247-249	247	X196	EFI ECU (ECASE)
EFIECU (PSW)	X203	X205	Throtle sensor (PSW)
Connect to 039-040	039	$\times 227$	Rotary ISC (+)
A/C VSV (-)	K19	$\times 231$	EFI ECU (A/C VSV)
EFt ECU (E01)	247	249	Engine earth
EFI ECU (E1)	248	249	Engine earth
Body earth	23	253	Shift position SW (-)
Connect to 247~249	247	276	EFI ECU (E02)
Connect to 247~249	247	2170	A/T ECU (EOR)
Connect to 248-249	248	2178	EFIECU (E11)

HW-36

WIRE CONNECTION, ENGINE, CARB.

From		To	
Location	Terminal	Terminal	Location
ATT ECU (E01)	7168		Connect to -W226
F/ 0.5 (HA)	04	A22	Lighting SW (+)
Back-up lamp RH (-)	G15	G2	Back-up lamp SW (+)
Body earth	Z3	G3	Back-up lamp SW (-)
Meter (0il pressure)	H5	H6	Oil pressure SW
Meter (Thermo gauge)	H20	H21	Themo sender
A/C relay No. 2 coil (-)	K156	K96	AC coolant temp. SW
AlC amp.	K138	K188	AC cut SW
Radiator fan relay coil (-)	L4	L2	Radiator fan SW
IG SW (ST)	M1	M2	Starter (ST)
Neutral start SW (-)	M4	M2	Starter (ST)
IG SW (ST)	M1	M3	Neutrai start SW (+)
Battery (+)	M12	M13	Starter (+ B)
IG coil (IG-)	N7	N8	Distributor (+)
Connect to N31-019	N31	N37	lgnitor (+)
F/L (+) Battery	0102	02	F/L $0.3(+)$
F/L (+) Battery	0102	03	F/L 0.5 (+)
Alternator (+ B)	018	012	IG SW (AM)
F/L 0.3 (Rad)	0101	016	Radiator fan relay contact point (+)
Fuse, engine (-)	N31	019	Alternator (IG)
Meter (Charge)	020	021	Alternator (L)
F/L 0.3 (AC)	083	032	A/C relay contact point (+)
Alternator (+B)	018	062	F/L $1.25(-)$
F/L (Battery)	08	063	F/L 1.25 (+)
F/L 0.3 (AC) BATT	084	0103	F/L 0.3 (+)
ATT indicator (L)	H24	W9	Shift position SW (L)
A/T indicator (2)	H25	W11	Shift position SW (2)
A/f indicator (D)	H26	W13	Shilt position SW (D)
AfT indicator (N)	H27	W15	Shift position SW (N)
ATT indicator (P)	H29	W18	Shift position SW (P)
ATT ECU (S1)	W27	W28	Shift solenoid No. 1
AT ECU (S2)	W29	W30	Shitt solenoid No. 2
ATT ECU (SL)	W136	W202	L-up control sotenoid
AT ECU (STH +	W203	W204	Pressure control solenoid (+)
ATT ECU (STH -)	W205	W206	Pressure control solenoid (-)
Af ECU (WT)	W42	W207	A/T coolant temp. SW
AT ECU ($\mathrm{NC}+$)	W218	W220	Cylinder revolution sensor (NC +)
A/T ECU ($\mathrm{NC}-\mathrm{-}$)	W219	W221	Cylinder revolution sensor (NC -)
Connect to 2168 -	2168	W226	Vehicle speed sensor shielded meshed wire
Connect to Z168-	2168	W228	Revolution sensor shieided meshed wire
A/T ECU (SPD1 +)	W230	W231	Vehicle speed sensor (SPD1 +)

From		To	
Location	Terminal	Terminal	Location
ATT ECU (SPO1 -)	W217	W232	Vehicle speed sensor (SPD1 - -
Connect to N31-019	N31	X8	Idle up VSV (+)
AT ECU (E20)	W23	X39	Throtle sensor (E20)
Af ECU (VTH)	W21	X41	Throtile sensor (VTH)
AT ECU (VCC)	W19	X42	Throtlle sensor (VCC)
Idie up VSV (-)	X9	X152	Idle up relay contact point (+)
Connect to N31~019	N31	Y5	Fuel cut
Connect to N31~019	N31	Y14	Outer vent
Body earth	Z3	Z53	Shift position SW (-)
Engine earth	Z49	Z170	ATT ECU (EO22)

IIRE CONNECTION, COWL, EFI L.H.D. (EC Spec.)

From		To	
Location	Termina!	Terminal	Location
Batted with W199	W199	(A)	Batted with 2116
Headlight LH (+)	A2	A1A	J/C 1
J/B 6 (Headlight fuse LH-)	A1	A2A	J/C 1
Connect to A7-A17	A7	A3	Headlight LH (Hi)
Connect to A8-A18	A8	A4	Headlight LH (L0)
J/C 1	A12A	A10	Meter a (Beam +)
J/8 6 (Headlight fuse RH -)	A5	A10A	J/C 1
Connect to A7~A17	A7	A11	Meter A (Beam -)
Headlight RH (t)	A6	A11A	J/C 1
Headlight RH (Hi)	A7	A17	Multi-control SW (Dimmer Hi)
Headlight RH (Lo)	A8	A18	Multi-control SW (Dimmer Lo)
R/B 2 (FL main -)	04	A22	Multi-control SW (Lighting SW +)
Multi-control SW (Lighting SW -)	A23	A24	J/B 3 (Lighting SW)
Connect to 04~A22	04	A29	Day-light relay (Headlight +)
Connect to A23-A24	A23	A30	Day-light relay (Headlight -)
Connect to AB-A18	A8	A31	Day-ight relay (Headlight L0)
Body earth J/C RH (Earth)	214E	A32	Day-light relay (Earth)
Connect to A7~A17	A7	A33	Day-light relay (Headlight Hi)
J/C 1	A14A	A54	Levelling RH (+)
Body earth J/C RH (Earth)	2145	A55	Levelling RH (Earth)
J/C 1	A3A	A61	Levelling LH (+)
1/B6 (Earth)	Z186	A62	Levelling LH (Earth)
Levelling RH (0)	A56	A63	Levelling LH (0)
Level ling RH (1)	A57	A64	Levelling LH (1)
Levelling RH (2)	A58	A65	Leveliing LH (2)
Levelling RH (3)	A59	A66	Levelling LH (3)
Levelling RH (4)	A60	A67	Levelling LH (4)
Connect to 2186~A62	2186	A68	Levelling SW (Earth)
Connect to A56-A63	A56	A69	Levelling SW (0)
Connect to A57-A64	A57	A70	Levelling SW (1)
Connect to A58-A65	A58	A71	Levelling SW (2)
Connect to A59~A66	A59	A72	Levelling SW (3)
Connect to A60-A67	A60	A73	Levelling SW (4)
To engine 2 (VSV -)	X9	AX1	Day-light diode (+)
Connect to A7~A17	A7	AX2	Day-light diode (-1)
Connecl lo A8~A18	A8	AX3	Day-light diode (-2)
J/B 5 (Tail fuse -2)	C11	C1A	J/C 2
Meter 1 (Illumi. +)	C2	C2A	J/C 2
1/B4 (Tail fuse-t)	C9	C10	Clearance RH (+)
connect to C6-C12	C6	C10	Clearance RH (+)

From		To	
Location	Terminal	Terminal	Location
J/B 4 (Taif fuse -)	C6	C12	Clearance LH (+)
J/C 2	C4A	C27	AT console (lllumi. +)
Connect to 055-02A	055	C29	To instrument panel 1 (Clock +B)
Mutiti-control SW (Rear fog -)	C37	C38	To instrument panel 2 (Rear fog SW +)
Muiti-control SW (Tail SW -)	C13	C45	J / B (Tail fuse +)
R/B 1 (Day-light fuse -)	C104	C49	Day-light relay (Day-light fuse)
J/B6 (Tail 2)	C80	C50	Day-light relay (Tail)
J/B 4 (Tail 1)	C9	C51	Day-light relay (Tail)
To instrument panel 2 (Rear fog SW -)	C39	¢71	To floor (Rear fog RH +)
Connect to C47~C115	C47	C80	J/B 6 (Tail LH power source)
Connect to C80~C115	C80	C102	J/B 5 (Tail fuse -)
J/B 6 (Fog fuse --)	C56	C103	$\begin{aligned} & \text { Multi-control SW (Rear } \\ & \text { fog }+ \text {) } \end{aligned}$
$J / B 5$ (Tail fuse -)	C102	C103	Multi-control SW (Rear fog +)
Connect to C21-C2A	C2A	C112	Heater control (Illumi. +)
Connect to 2192-G3	2192	C113	Heater control (Illumi. earth)
J/C 2	H5A	C114	Tail buzzer (IG +)
J/B6 (Tail fuse LH-)	C47	C115	Tail buzzer (Tail)
J/B 6 (Tail LH power source)	C80	C115	Tail buzzer (Tail)
J/B (Tail fuse -)	C102	C115	Tail buzzer (Tail)
J/B 4 (Dome fuse -)	D34	D2	To interior lamp (Room $\operatorname{lamp}+$)
Connecl to D3-D9	D3	08	To floor (Courtesy SW RR)
To interior lamp (Room lamp -)	D3	D9	To courtesy 1 (Courtesy SWRL)
Connect to 07~031	07	016	Tail buzzer (Courtesy SW)
Connect to D3-D9	D3	D30	Tail buzzer diode (+)
To courtesy 1 (Courtesy SW FL)	D7	D31	Tail buzzer diode (-)
To courlesy 1 (Stop lamp)	E14	E1A	J/C 2
Stop lamp SW (-)	E11	E2A	J/C2
Horn (-)	E26	E4	Multi-control SW (Hom SW)
J/B 5 (Stop fuse -)	E9	E10	Stop lamp SW (+)
J/B 5 (Horn fuse -)	E1	E25	Horn (+)
To instrument panel 1 (Hazard SW)	F42	F2	Meter 2 (Red hazard)
J/B 4 (Front turn LH)	F8	F9	Front turn LH $(+)$
Connect to 24-Z15B	Z4	F10	Front turn (Earth)
J/B 4 (Side turn LH)	F44	F11	Side turn LH (+)
Connect to Z4-Z15B	24	F12	Side turn LH (Earth)

From		10		riori		To	
Location	Terminal	Termina!	Location	Location	Terminal	Terminal	Location
J/B 4 (Front turn RH)	F13	F14	Front turn RH (t)	To floor (Wiper motor -)	130	131	To instrument panel 1 (Rear wiper SW +)
Connect to Z106-W87	2106	F15	Front turn RH (Earh)				
Body earth RH (Earth)	2106	F15	Front turn RH (Earth)	Connect to 018-012	018	J19	Headlight washer sub (+)
Connect tio Z106-Z32	Z106	F15	Front turn RH (Earh)	J/C 1	A15A	J22	Headlight washer sub (Headight)
$\mathrm{J} / \mathrm{B} 4$ (Side turn RH)	F43	F16	Side turn RH (+)	Connect to 121~122	121	J23	Headlight washer sub (Power source)
Connect to Z3-Z14B	23	F17	Side turn RH (Earth)				
J/B 5 (Indicator LH)	F18	F19	Meter 2 (Indicator LH +)	Connect to 13-14	13	J25	Headight washer sub (SW)
J/B 5 (Indicator RH)	F20	F21	Meter 2 (Indicator RH +)				
To instrument panel 2 (Hazard SW -)	F38	F26	J/B 4 (Flasher relay B)	Heater relay (Contacl point -)	K11	K2	Blower motor (+)
J/B 4 (Hazard tuse -)	F40	F35	To instrument panel 2 (Hazard SW TB)	R/B 1 (2-way relay coil -)	K156	K2A	J/C 1
J/B 4 (Pressure relay L)	F27	F41	To instrument panel 2 (Hazard SW +)	Connect to K30-K4	K30	K3	Blower resister (+)
				To A/C 2 (Pressure SW)	K179	K3A	$\mathrm{J} / \mathrm{C} 1$
To instrument panel 2 (Hazard SW TR)	F36	F45	J/B 5 (Hazard RH)	Blower motor (-)	K30	K4	Heater control (Hi)
To instrument panel 2 (Hazard SW TL)	F37	F46	J/B 5 (Hazard LH)	Blower resistor (M1)	K5	K6	Heater controi (M1)
				Connect to Z3-Z14B	Z3	K7	Blower resister (Earth)
To floor (Back-up lamp RH-1	G15	G1A	J/C 2	Diode $6(-)$	K1	K8	Heater relay (Contact point +
				J/B6 (Heater fuse -)		K10	
To engine 2	Q2	G2A	J/C 2				
J/B 5 (Earth)	2192	G3	To engine 2 ($\mathrm{B} / \mathrm{LP} \mathrm{SW}$ earth)	J/C 2	H6A	K12	Heater relay (Coil +)
				Connect to K11-K2	K11	K14	R/B 1 (A/C luse +)
Meler 2 (Parking brake)	69	G7	To courtesy 1 (Parking brake)	Connect to K129~K151 To A/C 1 (Amp., Magnet clutch)	K129	K18	To engine 2 (VSV +)
						K22	To A/C 2 (Magnet ciutch)
J/C 1	G13A	G7	To courtesy 1 (Parking brake)				
				J/B6 (Defogger fuse -)	K26	K27	To instrument panel 2(Defogger $S W+$)
Brake fluid level SW (+)	G8	G11A	J/C 1				
Meter 2 (Biake)	G6	G12A	J/C2	To instrument panel 2 (Defogger SW -)	K28	K29	To floor (Defogger +)
J/B 5 (Gauge fuse -)	H1	H1A	J/C 2				
Meter 1 (IG)	H2	H2A	J/C 2	Blower resistor (M2)	K41	K42	Heater control (M2)
Meter 1 (0il pressure)	H5	H6	To engine 2 (0il pressure $S W$ +)	J/C 2	K1A	K96	To engine 2 (2-way coolant temp. SW)
Meter 2 (T gauge)	H20	H21	To engine 2 (Water temp. sender +)	J/B (Earlh)	2189	K109	To AC 1 (Amp. earth)
				Connect to K129-K151	K129	K145	To AC 2 (Dual pressure SW)
Meter 1 (F gauge)	H22	H23	To courtesy 2 (Fuel sender +				
Meter 2 (0/0 OFF)	H50	H51	ATECU 2 (0/D OFF)	To A/C 2 (Dual pressure SW-1	K146	K150	To A/C 1 (Amp. conlact point +)
Connect to W215-W213	W215	H53	Meter 2 (PWB)	To A/C a (Amp., Power source)	K129	K151	R/B 1 (A/C fuse -)
Connect to K28-K29	K28	H55	Meter 2 (Defogger indicator)	Radiator fan motor (-)	L1	K153	R/B 1 (A/C relay No. 2 contact point +)
Connect to 121-122	121	12	Front washer motor (+)	J/C 1	N10A	K155	To AC 2 (A)C relay No. 1 coil +)
Front washer molor (-)	13	14	$\begin{aligned} & \hline \text { Multi-control SW } \\ & \text { (Washer motor +) } \end{aligned}$				
Multi-control SW (Front	111	118	Front wiper motor (Lo)	J/C 1	N20A	K157	To A/C 1 (Tachometer pulse)
wiper SWL.0)	112	120	Front wiper motor (Hi)	EFI ECU (ACS1)	X198	K174	To AC 1 (ACSi)
Multi-control SW (Front wiper SW Hi)				To ANC 2 (COS motor +)	K181	K180	R/B 1 (A/C No. 2 conlacl point-)
J/B6 (Wiper fuse -)	121	122	$\begin{aligned} & \text { Front wiper motor (Cam } \\ & S W+\text {) } \end{aligned}$	R/B 1 (Radiator fan relay coil (-)	L24	K182	To AC 1 (ACC amp. relay -)
Multi-control SW (Front wiper SW OFF)	113	124	Front wiper motor (Cam SW common)	To engine 2 (VSV-)	K19	K185	To A/C 1 (Amp. VSV No. 1 -)
$\begin{array}{\|l} \hline \begin{array}{l} \text { To floor (Washer motor } \\ -1 \end{array} \\ \hline \end{array}$	127	128	To instrument panel 1 (Rear washer SW +)	To ACC 1 (Amp., ACC cut)	K138	K188	To engine 2 (A/C coolant temp. cut)

From		To	
Location	Terminal	Terminal	Location
R/B 2 (Radiator fan relay coil --)	L4	L2	To engine 1 (Fiadiator $\operatorname{fan} S W+1$
Connect to L14~L2	L. 4	L7	Diagnosis (Check radiator fan)
Connect to L4~L2	L4	L12	Diode 2 (Radiator fan SW)
IG SW (ST)	M1	M2	To engine 1 (Starter)
Connect to M11-X22	M11	M8	R/B 1 (ST source power)
Connect to M11-X22	M11	M9	Day-light relay (ST)
Connect to M1-M2		M10	J/B 3 (ST fuse)
IG SW 1 (IG1)	N1	N2	J/B 2 (IG fuse +)
J/B 6 (Engine fuse -)	N31	N2A	J/C 2
Connect to 014~N12A	014	N5	IG coil (IG)
Connect to N7-N21A	N7	N8	To engine 1 (Distributor IG pulse)
R/B 1 (Relay coil)	014	N12A	J/C 1
J/B 4 (IG1 fuse -)	N33	N13A	J/C 1
IG cosl (Distributor)	N7	N21A	J/C 1
Meter 1 (Tachometer pulse)	N11	N22A	J/C 1
J/C 1	N11A	N37	To engine 2 (lgnitor +)
IG SW (IG2)	N30	N38	J/B 2 (lG2 fuse +)
J/C 2	H4A	N50	Diagnosis ($\mathrm{IG}+$)
Connect to 014~N12A	014	N57	Condenser (+)
R/B 1 (ECU BATT)	055	02A	J/C 2
EFIECU (BATT)	042	03A	J/C 2
Connect to 018~012	018	04	Multi-control SW (Tail $S W+$)
To engine 1 (Alternator $+8)$	018	012	IG SW 1 (AM)
Connect to 04~A22	04	013	J/B 3 (Horn hazard fuse -)
R/B 2 (Radiator fan relay contact point -)	017	015	Radiator fan motor (+)
1/C2	N3A	019	To engine 2 (Alternator IG)
Alternator cut relay (Contact point --)	094	019	To engine 2 (Alternalor IG)
Meter 2 (Charge lamp -)	020	021	To engine 2 (Alternator L)
R/B 1 (CDS FL -)	083	032	To A/C 2 (A/C relay No. 1 contact point +)
To engine 2 ($\mathrm{R} / \mathrm{B} \overline{\mathrm{ECL}}$ +B)	039A	040	EFI ECU ($+\mathrm{B} 1)$
To engine 2 (R / B ECJ +B)	039B	041	EFI ECU (+B2)
$\mathrm{J} / \mathrm{C} 2$	13A	051	Day-light relay (IG +)
Connect to 020~021	020	052	Day-light relay (Alternator L)
Connect to N1A~093	N1A	091	Alternator cut relay (Coil +)
J/C 2	N1A	093	Allernator cut relay (Contact point +)
Sonned to 018-012	018	095	J/B 1 (AM -related fuse +)
/C 2	01A	097	A/T ECU 2 (BATT)

From		To	
Location	Terminal	Terminal	Location
R/B 1 (Fuel pump)	P5	P6	To courtesy 1 (Fuel pump +)
Connect to 018-012	018	P9	To courtesy 1 (Power No. $130 \mathrm{~A}+$)
To courtesy (No. $2 \mathrm{C} / \mathrm{B}$ 30A-)	P21A	P11	To interior lamp (Canvas motor +)
J/B 4 (Earth)	2193	P12	To interior lamp (Canvas motor -)
R/B 1 (Fuel cut)	P17	P18	EFf ECU (FC)
Connect to N1~N2	N1	P20	To courtesy 1 (Power No. 2 C/B 30A +)
Connect to P17-P18	P17	P68	Diagnosis (Fuel pump)
IG SW 2 (ACC)	R1	R2	J/B 3 (ACC-related luse +)
To instrument panel 1 (Radio FL +)	R6	R7	To door LH (Speaker FL +)
To instrument pane! 1 (Radio FL -)	R8	R9	To door LH (Speaker FL -)
To instrument panel 1 (Radio FR +)	R10	R11	To door RH (Speaker FR +)
To instrument panel 1 (Radio FR -)	R12	R13	To door RH (Speaker FR -)
To instrument panel 1 (R/M SW VL)	R18	R22	To door LH (R/M VL)
To instrument panel 1 (R/M SW HL)	R20	R23	To door LH (R/M HL)
To instrument panel 1 (R/M SW VR)	R19	R24	To door RH (R/M VR)
To instrument panei 1 (R/M SW HR)	R21	R25	To door RH (R/M HR)
To instrument panel 1 (R/M SW motor)	R17	R26	To door RH (R/M -)
Connect to R17-R26	R17	R27	To door LH (R/M -)
To instrument panel 1 (Radio RR +)	R28	R32	To floor (Speaker RR +)
To instrument pane: 1 (Radio RR -)	R29	R33	To floor (Speaker RR -)
To instrument panel 1 (Radio RL +)	R30	R34	To courtesy 1 (Speaker RL +)
To instrument panel 1 (Radio RL -)	R31	R35	To courtesy 1 (Speaker RL -)
J/C 2	E3A	W3	AT ECU 2 (BR)
Meter 2 (Easy)	H54	W4	A/T ECU 2 (Easy)
To engine 2 (L)	W9	W8	A/T ECU 1 (L)
To engine 2 (2)	W11	W10	ATT ECU 1 (2)
To engine 2 (D)	W13	W12	ATT ECU 1 (D)
To engine 2 (N)	W15	W14	A/T ECU 1 (N)
J/C 2	G3A	W16	AT ECU 2 (R)
To engine 2 (P)	W18	W17	A/T ECU 2 (P)
To engine 2 (Shilt solenoid No.1)	W28	W27	ATT ECU 2 (S1)
To engine 2 (Shift solenoid No.2)	W30	W29	A/T ECU 2 (S2)
Diagnosis (T)	W32	W31	A/T ECU 2 (T)
J/B 4 (Fuse ECU IG2-)	W187	W34	A/T ECU $2(+8)$

From		To	
Location	Terminal	Terminal	Location
To engine 2 (EFI THWC)	X191	W42	AT ECU 1 (WTH)
Connect io H54-W4	H54	W45	Diagnosis (ATT output)
Connect to Z15E-W159	215E	W47	ABS ECU 2 (Earth 1)
To courtesy 2 (ECU fuse IG2-)	W244	W48	ABS ECU $2(+B)$
R/B 3 (ABS BATT)	W247	W49	ABS ECU 2 (BATT)
ABS relay 2 (Solenoid relay coil)	W97	W54	ABS ECU 2 (Solenoid relay)
ABS actuator 2 (AST)	W74	W57	ABS ECU 2 (AST)
To courtesy 2 (Stop)	E11A	W58	ABS ECU 1 (STP)
ABS actuator 2 (FILH)	W75	W60	ABS ECU 2 (Solen0id Fr LH)
ABS actuator 2 (Rr RH)	W79	W61	ABS ECU 2 (Solenoid Rr RH)
Meter 1 (ABS warming)	W110	W68	ABS ECU 1 (W)
ABS actuator 2 (Fr RH)	W77	W70	ABS ECU 2 (Soienoid Fr RH)
ABS actuator 2 (Rr LH)	W80	W71	ABS ECU 2 (Solenoid Rt LH)
ABS relay 1 (Relay -)	W96	W84	ABS ECU 2 (Relay coil -)
ABS relay 1 (Motor +)	W91	W86	ABS actuator 1 (Motor)
Body earth RH (Earth)	2106	W87	ABS actuator 1 (Earth)
R/B 3 (ABS FL -)	073	W90	ABS relay 1 (Motor power source)
Connect to 073-W90	073	W92	ABS relay 2 (Solenoid power source)
ABS ECU 1 (RR +)	W64	W98	To floor (Wheel sensor RR +)
ABS ECU 1 (RR-)	W50	W99	To fioor (Wheel sensor RR -)
ABS ECU 2 ($\mathrm{FL}+$)	W65	W100	ABS sensor LH (FL +)
ABS ECU 2 ($\mathrm{FL}-\mathrm{l}$)	W51	W101	ABS sensor LH (FL -)
ABS ECU 1 (RL +)	W66	W102	To floor (Wheel sensor RL +)
ABS ECU 1 (RL -)	W52	W103	To floor (Wheel sensor RL -)
ABS ECU 2 ($\mathrm{FR}+$)	W67	W104	ABS sensor RH (FR +)
ABS ECU 2 ($\mathrm{FR}-$)	W53	W105	ABS sensor RH \langle FR -)
ABS ECU 2 (TC)	W128	W126	Diagnosis (TC)
ABS ECU 1 (TS)	W196	W127	Diagnosis (TS)
Connect to W110-W68	W110	W134	Diagnosis (Diag. output)
$\text { To engine } 2 \text { (L-UP }$ solenoid)	W202	W136	AT ECU 2 (SL)
Body earth J/C LH (Earth)	245E	W159	ABS ECU 2 (Earth 2)
ABS relay 2 (Solenoid +)	W94	W192	ABS actuator 1 (Solenoid)
ABS actuator 2 (MT)	W191	W194	ABS ECU 2 (MT)
To courtesy 2 (PKB)	G7A	W195	$\begin{aligned} & \text { ABS ECU } 1 \text { (Parking } \\ & \text { brake SW) } \end{aligned}$
ABS relay 1 (Motor relay coil)	W95	W197	ABS ECU 2 (Motor relay)
Batted with 2113, 2114	2113	W198	ABS ECU 2 (Fr shield eartit)

From		To	
Location	Terminal	Terminal	Location
Batted with (4)	(4)	W199	ABS ECU 1 (Rr shield earth)
Connect to W110-W68	W110	W200	ABS check 1 (1P lemale)
ABS relay 2 (W)	W193	W201	ABS check 2 (1P male)
To engine 2 (Pressure solenoid +)	W204	W203	A/T ECU 2 (STH +)
To engine 2 (Pressure solenoid -)	W206	W205	ATT ECU 2 (STH-)
A/T console (0/D SW)	V76	W208	A/T ECU 1 (0/0)
ATT console (PWR)	W215	W213	A/T ECU 1 (PWR)
AT Console (Easy)	W216	W214	ATT ECU 1 (Easy)
$\begin{aligned} & \text { To engine } 2 \text { (T/M SPD } \\ & - \text { - } \end{aligned}$	W232	W217	A/T ECU 1 (SPD1 -)
To engine 2 (Cylinder revolution +)	W220	W218	A/T ECU $1(\mathrm{NC}+)$
To engine 2 (Cylinder revolution-)	W221	W219	ATT ECU 1 (NC -)
Connect to Z187-W227	2187	W226	Shield earth (Separation)
Connect to 2187-W227	2187	W228	Shield earth (Separation)
To engine 2 (T/M SPD +	W231	W230	ATT ECU 1 (SPD1 +)
To engine 2 (EFI VCC)	X190	W233	AT ECU 2 (VCC)
To engine 2 (EFIVTH)	X192	W235	AT ECU 2 (VTH)
To engine 2 (EFIE20)	X193	W236	A/T ECU 2 (E2)
EFI ECU (TC)	X194	W237	A/T ECU 1 (TC)
ABS ECU 1 (GST)	W238	W241	\qquad
ABS ECU 1 (GS1)	W239	W242	To courtesy 2 (G sensor GS1)
ABS ECU 1 (GS2)	W240	W243	To courtesy 2 (G sensor GS2)
Meter 1 (Check engine)	X1	X2	EFI ECU (W)
Meter 1 (Vehicie speed sensor)	X3	X4	EFI ECU (Vehicle speed sensor)
Connect to K28-K29	K28	X15	Diode 1 (Defogger)
J/C 1	A13A	X16	Diode 2 (Headight)
Diode 1 (OUT)	X17	X18	EFI ECU (Defogger SW)
To ACC 1 (Amp., ACS 2)	K175	$\times 19$	EFI ECU (A/C)
Diagnosis (VF)	X20	$\times 21$	EFI ECU (VF)
J/B6 (Starter fuse)	M11	$\times 22$	EFI ECU (STA)
EFI ECU (T 1)	246	$\times 57$	Diagnosis (Check terminal)
To engine 2 (Engine earth)	249	X78	EFI ECU (AM)
Connect to X1~X2	X1	X109	Diagnosis (EF1 Output)
EFI ECU (DSW2)	X124	X150	Diode 2 (N)
Connect to X248-K8	X248	X160	Diode 2 (Heater control SW)
EFI ECU (ACT)	X201	X176	To AC 1 (ACT)
To engine 2 (Alternator C)	098	X195	EFI ECU (Allernator C)
Alternator cut relay (Coil -)	092	X226	EFI ECU (ALTC)
Heater relay (Coil -)	K13	X247	Diode 6 (+)
Connect to $23-2148$	23	27	To floor (Earth)

From		T0	
Location	Terminal	Terminaf	Location
J/B 5 (Earth)	2181	28	Mieler 2 (Power earth)
J/B 6 (Earth)	2188	211	Brake fluid level SW (Earth)
Body earth RH (Earth)	Z3	2148	Body earth J/C RH (Earth)
Body earth J/C LH (Earth)	215C	Z14C	Body earth J/C RH (Earth)
Body earth LH (Earth)	24	2158	Body earh J/C LH (Earth)
Body earlh J/C RH (Earth)	Z14E	216	Headight washer sub (Earth)
Connect to 215C~214C	215C	Z21	Heater contsol (Heater control SW earth)
J/B 5 (Earth)	2179	226	A/T console (lliumi. -)
Body earth J/C RH (Earth)	214A	230	To instrument panel 1 (Radio earth)
Body earth RH (Earth)	2106	Z32	To ACC 2 (CDS motor)
Connect to Z106-W87	2106	732	To A/C 2 (CDS molor)
Connect to Z4-Z15B	24	241	To courtesy (Earth)
Body earth LH (Earih)	2195	245	R/B 2 (R/B earth)
Body earth LH (Earth)	2195	245	R/B 2 (R/B earth)
Connect to Z15C-Z14C	215C	263	J/B6 (Earth)
Connect to 215C~214C	215 ${ }^{\text {c }}$	275	Muiti-conitrol SW (Earth)
Body earth J/C LH (Earth)	215D	285	Meter 2 (Gauge earth)
Connect to Z106-W87	2106	2105	ABS relay 2 (Earth)
Batted with W198	W198	2113	Shield earth (Separation)
Batted with W198	W198	2114	Shield earth (Separation)
Batted with (A)	(A)	2116	To floor (Rr shield earth)
Connect to 73-214B	Z3	2145	Clearance AH (Earth)
Connect to 24~215B	Z4	2146	Clearance LH (Earth)
Body earth J/C LH (Earth)	215A	2152	Heater relay (Stop earth)
Body earth J/C RH (Earth)	Z14D	2168	A/T ECU 2 (E11)
Sonnect to Z14D-Z168	2140	2169	A/T ECU 2 (E12)
Body earth J/C RH (Earth)	Z14D	2170	A/T ECU 2 (E01)
Connect to Z14D-Z168	2140	2175	AfT ECU 2 (E02)
Connect to Z179-Z26	2179	2183	AT console (0/D SW earth)
Connect to Z15C-Z14C	215C	2184	Diagnosis (Earth)
Radialor fan motor (-)	L1	2195	Body earth LH (Earth)
Connect to $\mathrm{Z3}$-214B	23	Z210	Tail buzzer (-)
J/B6 (Earth)	2187	Z227	To engine 2 (Engine sensor shieid)

HW-42

WIRE CONNECTION, COWL, EFI R.H.D.

From		To	
Lacation	Terminal	Terminal	Location
Batted with W199	W199	(A)	Batted with 2116
Headlight LH (+)	A2	A1A	J/C 1
$\mathrm{J} / \mathrm{B} 6$ (Headlight fuse LH -)	A1	A2A	J/C 1
Connect to A7~A20A	A7	A3	Headlight L.H (Hi)
J/C 1	A33A	A4	Headlight LH (Lo)
$\mathrm{J} / \mathrm{C} 1$	A12A	A10	Meter 1 (Beam +)
Connect to A1'~A21A	A17	A11	Meter 1 (Beam-)
Headlight RH (+)	A6	A11A	J/C 1
J/B 6 (Headiight fuse RH-)	A5	A1CA	J/C 1
$\begin{aligned} & \text { Multi-Control SW } \\ & \text { (Dimmer Hi) } \end{aligned}$	A17	A21A	J/C 1
R/B 2 (FL main -)	04	A22	Multi-control SW (Lighting SW +)
Muilt-control SW (Lighting SW -)	A23	A24	J/B 3 (Lighting SW)
Headlight RH (Hi)	A7	A2CA	J/C 1
$\begin{aligned} & \text { Muiti-controil SW } \\ & \text { (Dimmer Lo) } \end{aligned}$	A18	A31A	J/C 1
Connect to A23-A24	A23	A39	Dim-dip relay (Coii +)
Headlight RH (L0)	AB	A3CA	$\mathrm{J} / \mathrm{C} 1$
J/C 1	A22A	A43	Dim-dip relay (D coil -)
J/C 1	A32A	A44	Dim-dip resister (RH +)
Connect to A32A-A44	A32A	A45	Dim-dip resister ($\mathrm{LH}+$)
Dim-dip relay ($\mathrm{C}+$)	A42	A46	Dim-dip resister (-)
J/C 1	A14A	A54	Levelling RH (+)
Body earth RH (Earth)	2196	A55	Levelling RiH (Earth)
J/C 1	A3A	A61	Levelling LH (+)
Body earth LH (Earth)	Z195	A62	Levelling LH (Earth)
Leveling RH (0)	A56	A63	Levelling LH (0)
Levelling RH (1)	A57	A64	Leveling LH (1)
Levelling RH (2)	A58	A65	Levelling LH (2)
Levelling RH (3)	A59	A66	Levelling LH (3)
Levelling RH (4)	A60	A67	Levelling LH (4)
Body earth J/C RH (Earth)	Z145	A68	Levelling SW (Earth)
Connect to A56-A63		A69	Levelling SW (0)
Connect to A57~A64		A70	Levelling SW (1)
Connect to A58-A65		A71	Levelling SW (2)
Connect to A59-A66		A72	Levelling SW (3)
Connect to A60-A67		A73	Levelling SW (4)
J/B 5 (Tail fuse -2)	C11	C1A	J/C2
Meter 1 (lilumi. +)	C21	C2A	J/C2
Connect to 018-012	018	C4	Multi-control SW (Tail SW +)
J/B 4 (Tail fuse -1)	C9	C10	Clearance RH (+)
$J / \bar{B} 4$ (Tail fuse -)	C6	C12	Clearance LH (+)
J/C 2	C4A	C27	AT console (llilumi. +)
Connect to 055-02A	055	C29	To instrument panel (Clock + B)

From		To	
Location	Termina!	Terminal	Location
Multi-control SW (Reartog -)	C37	C38	To instrument panel 2 (Rearlog SW)
Multi-control SW (Tail SW -)	C13	C45	J/B (Tail fuse +)
J/C 2	C6A	C63	Dim-dip relay ($\mathrm{A}+$)
To instrument panel 1	Z166	C65	Meter 1 (Illumi. -)
To instrument panel 2 (Rearlog SW -)	C39	C71	To floor (Reariog RH +)
J/B6 (Tail fuse LH-)	647	C80	J/B 7 (Tail LH Power supply)
J/B6 (Tail LH Power supply)	C80	C102	J/B5 (Tail fuse -)
J/B6 (Fog fuse -)	C56	C103	$\begin{aligned} & \text { Multi-control SW } \\ & \text { (Rearfog }+ \text {) } \end{aligned}$
J/B 5 (Tail fuse -)	C102	C103	Multi-control SW (Rear $\log +$)
J/C2	C5A	C112	Heater control (Illumi. +)
Connedt 10 2166~C65	2166	C113	Heater control (themi. earth)
J/C 2	H3A	C114	Tail buzer (IG +)
Connect to C47-C80	C47	C115	Tail buzzer (Tail)
Connect to C80~C102	C80	C115	Tail buzer (Tail)
J/B 4 (Dome fuse -)	D34	D2	To interior lamp (Room lamp +)
Connect to D3-09	D3	D8	$\begin{aligned} & \text { To floor (Courtesy SW } \\ & \text { RR) } \\ & \hline \end{aligned}$
To interior lamp (Room lamp -)	03	D9	To courtesy (Courtesy SW RL)
To floor (Courtesy SW FR)	D7	016	Tail buzzer (Courtesy SW)
To floor (Stop lamp +)	E14	E1A	$\mathrm{J} / \mathrm{C} 2$
Stop lamp SW (-)	E11	E2A	J/C 2
Horn (-)	E26	E4	$\begin{aligned} & \text { Multi-control SW (Horn } \\ & \text { SW) } \end{aligned}$
J/B 5 (Slop fuse -)	E9	E10	Stop lamp SW (+)
J/B 5 (Horn fuse -)	E1	E25	Horn (+)
To instrument panel (Hazard SW)	F42	F2	Meter 2 (Red hazard)
J/B 4 (Front turn LH)	F8	F9	Front turn $\mathrm{LH}(+)$
Connect to 24-2̇15B	24	F10	Front turn LH (Earth)
J/B 4 (Side turn LH)	F44	F11	Side turn LH (+)
Connect to 24-215B	24	F12	Side turn LH (Earth)
$\mathrm{J} / \mathrm{B} 4$ (Front turn RH)	F13	F14	Front turn $\mathrm{RH}(+)$
Connect to Z3~Z14B	73	F15	Front tum RH (Earth)
$\mathrm{J} / \mathrm{B} 4$ (Side turn RH)	F43	F16	Side turn RH (+)
Connect to Z3-214B	Z3	F17	Side turn RiH (Earth)
J/B 5 (Indicator LH)	F18	F19	Meter 2 (indicator LH +)
J/B 5 (Indicator RH)	F20	F21	Meter 2 (indicator RH +)
To instrument panel 2 (Hazard SW -)	F38	F26	J/B 4 (Flasher relay B)
J/B 4 (Hazard fuse -)	F40	F35	To instrument panel 2 (Hazard SW TB)

From		To		From		To	
Location	Terminai	Terminal	Location	Location	Terminal	Terminal	Location
J/B 4 (Flasher relay L)	F27	F41	To instrument panel 2	Diode 6 (-)	X248	K8	Heater control (Lo)
			(Hazard SW +)	$\mathrm{J} / \mathrm{B} 6$ (Heater fuse -)	K1	K10	Heater relay (Contact point +)
To instrument panel 2 (Hazard SW TR)	F36	F45	J/B 5 (Hazard RH)				
				J/C 2	H4A	K12	Heater relay (Coii +)
To instrument panel 2 (Hazard SW TL)	F37	F46	J/B 5 (Hazard LH)	Connect to K11-K2	K11	K14	R/B 1 (A/C fuse +)
				Connect to K129-K151	K129	K18	To engine 2 (VSV +)
To fioor (Back lamp RH -)	G15	G1A	J/C 2	To A/C 1 (Amp., Magnet clutch)	K50	K22	To A/C 2 (Magnet clutch)
To engine 2 (Back lamp SW)	G2	G2A	J/C 2	J/B6 (Defogger fuse -)	K26	K27	To instrument panel 2 (Defogger SW +)
J/B 5 (Earth)	2192	G3	To engine 2 (Back lamp SW earth)	To instrument panel 2 (Defogger SW -)	K28	K29	To floor (Defogger +)
Meter 2 (Parking brake)	G9	G7	To floor (Parking brake)	Blower resister (M2)	K41	K42	Heater control (M2)
$\mathrm{J} / \mathrm{C} 1$	G13A	G7	To floor (Parking brake)	J/C 1	K1A	K96	To engine 2 (2-way coolant temp. SW)
Brake fluid SW (+)	G8	G11A	$\mathrm{J} / \mathrm{C} 1$				
Meter 2 (Brake)	G6	G12A	J/C 1	J/B 5 (Earth)	2189	K109	To AMC 1 (Amp. earth)
J/B 5 (Gauge fuse -)	H1	H1A	J/C 2	Connect to K129-K151	K129	K145	To AV 2 (Dual pressure SW +)
Connect to H2A-N50	H2A	H2	Meter 1 (IG)				
Meter 1 (0il pressure)	H5	H6	To engine 2 (Oit pressure SW +)	To A/C 2 (Dual pressure SW-)	K146	K150	To AC 1 (Amp. contact point +)
Meter 2 (T gauge)	H20	H21	To engine 2 (Coolant temp. sender +)	To A/C 1 (Amp. power supply)	K129	K151	R/B 1 (A/C fuse -)
Meter 1 (F gatge)	H22	H23	To courtesy 2 (Fuel sender +)	Radiator lan motor (-)	L1	K153	R/B 1 (A / C relay No. 2 contact point +)
Connect to P13A-W16		H28	Meter 2 (Shift indicator)	Connect to $\mathrm{N} 33-014$	N33	K155	To A/C 2 (A/C relay No. 1 coll +)
$\mathrm{J} / \mathrm{B} 6$ turn (-)	F51	H47	Meter $2(+)$				
Meter 2 (0/D OFF)	H50	H51	A/T ECU 2 (0/D OFF)	Connect to N7~N11	N7	K157	To A/C 1 (Tachometer pulse)
Connect to W215-W213	W215	H53	Meter 2 (Power)	EFI ECU (ACS1)	X198	K174	To A/C 1 (ACS1)
Connect to K28-K29	K28	H55	Meter 2 (Defogger indicator)	EFI ECU (ACT)	X201	K176	To A/C 1 (Alternator)
Connect to 121-122	121	12	Front washer motor (\dagger)	To A/C 2 (CDS motor +)	K181	K180	R/B 1 (A/C No. 2 contact point-)
Front washer motor (-)	13	14	Multi-control SW (Washer molor +)	R/B 1 (Radiator fan relay coil -)	L24	K182	To AC 1 (A/C amp. relay-)
Mutti-control SW (Front wiper SW Lo)	111	118	Front wiper motor (L0)	To engine 2 (VSV -)	K19	K185	To AC 1 (Amp. VSV No. 1-)
$\begin{aligned} & \text { Multi-controf SW (Front } \\ & \text { wiper SW Hi) } \end{aligned}$	112	120	Front wiper motor (Hi)	To A/C 1 (Amp. A/C cut)	K138	K188	To engine 2 (A/C coolant temp. cut SW)
J/B6 (Wiper fuse -)	121	122	Front wiper motor (Cam SW +)	R/B 2 (Radiator fan relay coil -)	L4	L2	$\begin{aligned} & \text { To engine } 1 \text { (Radiator } \\ & \text { fan } S W+\text {) } \end{aligned}$
Multi-control SW (Front wiper SW OFF)	113	124	Front wiper motor (Cam SW common)	Connect to L4-L2	14	L7	Diagnosis (Check radiator fan)
To floor (Washer motor -)	127	128	To instrument panel 1 (Rear washer SW +)	Connect to L4-L2	L4	L12	Diode 2 (Radiator fan SW)
To floor (Wiper motor -)	130	131	To instrument panel 1 (Rear wiper SW +)	IG SW 2 (ST)	M1	M2	To engine 1 (Slater)
Heater relay (Contact point -)	K11	K2	Biower motor (+)	Connect to M11-X22	M11	M8	R/B 1 (Starter power supply)
R/B 1 (2-way relay coil	K156	K2A	J/C 1	Connect to M1-M2	M1	M10	J/B 3 (Starter fuse)
				IG SW 1 (IG 1)	N1	N2	J/B 2 (IG fuse +)
Connect to K30-K4	K30	K3	Blower resister (+)	J/B 6 (Engine fuse -)	N31	N2A	J/C 2
To A/C 2 (Pressure SW)	K179	K3A	J/C 1	Connect to N33-014	N33	N5	IG coil (IG)
Blower motor (-)	K30	K4	Heater control (Hi)	Connect to N7-N11	N7	N8	To engine 1 (Distributor IG pulse)
Blower resister (M1)	K5	K6	Heater control (M1)				
Body earth J/C LH 'Earth)	215A	K7	Blower resister (Earth)	IG coil (Distributor)	N7	N11	Meter 1 (Tachometer pulse)

From		To	
Location	Terminal	Terminal	Location
Conned 10 $\mathrm{N} 33 \sim 014$	N33	N37	To engine 2 (lgnitor +)
IG SW 2 (IG 2)	N30	N38	J/B 2 (IG fuse +)
J/C 2	H2A	N50	Diagnosis (IG +)
Connect to N33-014	N33	N57	Condenser (+)
Conneci to H2A~N50	H2A	N145	A/T shift lock (IG)
R/B 1 (ECU BAT)	055	02A	J/C 2
EFIECU (BATT)	042	03A	J/C 2
To engine 1 (Alternator +B)	018	012	IG SW 1 (AM)
Connect to 04~A22	04	013	J/B 3 (Horn hazard fuse -)
J/B 4 (IG 1 fuse -)	N33	014	R/B 1 (Relay coil +)
R/B 2 (Radiator fan relay contact point -)	017	015	Radiator fan motor (+)
J/C2	N1A	019	To engine (Alternator IG)
Alternator cut relay (Contact point -)	094	019	To engine 2 (Alternator IG)
Meter 2 (Charge lamp -)	020	021	To engine 2 (Alternator L)
R/B 1 (CDS FL -)	083	032	To AC 2 (A/C relay No. 1 contact point +)
To engine 2 ($\mathrm{R} / \mathrm{BECU}$ +B)	039A	040	EFI ECU (+81)
To engine 2 (R/B ECU +B)	039B	041	EFIECU (+ B2)
J/C 2	N3A	057	Dim-dip relay (A coil +)
Connect to 04~A22	04	058	Dim-dip relay ($\mathrm{B}+$)
Connect to N1A-093	N1A	091	Alternator cut relay (Coil +)
$\mathrm{J} / \mathrm{C} 2$	N1A	093	Allernator cut relay (Contact point +)
Connect to 018-012	018	095	$\mathrm{J} / \mathrm{B} 1$ (AM-related fuse +)
J/C 2	G1A	097	A/T ECU 2 (BATI)
R/B 1 (Fuel pump)	P5	P6	To courtesy 1 (Fuel pump +)
Connect to 018-012	018	P9	To floor (Power No. 1 $30 \mathrm{~A}+$)
$\begin{aligned} & \text { To floor (No. } 2 \mathrm{C} / \mathrm{B} 30 \mathrm{~A} \\ & -\mathrm{G} \end{aligned}$	P21A	P11	To interior lamp (Canvas top motor +)
Connect to $24 \sim 215 B$		P12	To interior lamp (Canvas top motor -)
R/B1 1 (Fuel cut)	P17	P18	EFIECU (FC)
Connect to N1~N2	N1	P20	To illoor (Power No. 2 C/B30A +)
Connect to P17-P18	P17	P68	Diagnosis (Fuel pump)
IG SW 2 (ACC)	R1	R2	J/B (ACC-related fuse +)
To instrument panel 1 (Radio FL +)	R6	R7	$\begin{aligned} & \text { To door LH (Speaker FL } \\ & + \text { +) } \end{aligned}$
To instrument panel 1 (Radio FL -)	R8	89	To door LH (Speaker FL \qquad -)
To instrument panei 1 (Radio FR +)	R10	R11	$\begin{aligned} & \text { To door RH (Speaker FR } \\ & + \text { +) } \end{aligned}$
To instrument paneel 1 (Radio FR -)	R12	R13	\qquad

From		To	
Location	Terminal	Terminal	Location
To instrument panel 1 (Remote-controlled mirror SW VL)	R18	R22	To door LH (Remote-controlled mirror VL)
To instrument panel 1 (Remote-controlied mirror SW HL)	R20	R23	To door LH (Remote-controlled mirror HL)
To instrument panel 1 (Remote-controlled misror SWVR)	R19	R24	To door RH (Remote-controlled mirror VR)
To instrument panel 1 (Remote-controlled mirror HR)	R21	R25	To door RH (Remote-controlled mirror HR)
To instrument panei 1 (Remote-controlled mirror SW motor -)	817	R26	To door RH (Remote-controlled mirror -)
Connect to R17~R26	R17	R27	To door LH (Remote-controlled mirror -)
To instrument panel 1 (Radio RR +)	R28	R32	To floor (Speaker RR +)
To instrument panel 1 (Radio RR -)	R29	R33	To tloor (Speaker RR -)
To instrument panel 1 (Radio RL +)	R30	R34	To courtesy 1 (Speaker RL +)
To instrument panel 1 (Radio RL -)	R31	R35	To courtesy 1 (Speaker RL -
J/C2	E3A	W3	ATI ECU 2 (BR)
Connect to E3A-W146	E3A	W3	AT ECU 2 (RR)
Meter 2 (Easy)	H54	W4	AT ECU 2 (Easy)
To engine 2 (L)	W9	W8	ATTECU 1 (L)
To engine 2 (2)	W11	W10	ATTECU 1 (2)
To engine 2 (D)	W13	W12	A/T ECU 1 (D)
To engine $2(\mathrm{~N})$	W15	W14	ATECU 1 (N$)$
J/C 2	G3A	W16	AT ECU 2 (R)
To engine 2 (P)	W18	W17	ATTECU 2 (P)
To engine (Shift solenoid No. 1)	W28	W27	ATE ECU 2 (S1)
To engine (Shift solenoid No. 2)	W30	W29	ATT ECU 2 (S2)
Diagnosis (T)	W32	W31	ATE ECU $2(\mathrm{~T})$
J/B 4 (Fuse ECU IG 2-)	W187	W34	ATE ECU $2(+B)$
To engine 2 (EFI THWO)	$\times 191$	W42	ATT ECU 1 (WTH)
Connect to H54~W4	H54	W45	Diagnosis (AT output)
Connect to Z145-W159	2145	W47	ABS ECU 2 (Earth 1)
To lloor (ECU luse IG 2 -)	W244	W48	ABS ECU 2 (+B)
R/B 3 (ABS BATT)	W247	W49	ABS ECU 2 (BATI)
ABS relay 2 (Solenoid relay coil)	W97	W54	ABS ECU 2 (Solenoid relay)
ABS actuator 2 (AST)	W74	W57	ABS ECU 2 (AST)
To floor (Slop)	E11A	W58	ABS ECU 1 (STP)
ABS actuator 2 \{Front LH)	W75	W60	ABS ECU 2 (Solenoid Front LH)
ABS actuator 2 (Front RH)	W79	W61	ABS ECU 2 (Solenoid Rear RH)
Meler 1 (ABS warning)	W110	W68	ABS ECU 1 (W)

From		To	
Location	Terminal	Terminal	Location
ABS actuator 2 (Front RH)	W77	W70	$\begin{aligned} & \text { ABS ECU } 2 \text { (Solenoid } \\ & \text { Front RH) } \end{aligned}$
ABS actuator 2 (Front LH)	W80	W71	$\begin{aligned} & \text { ABS ECU } 2 \text { (Solenoid } \\ & \text { Rear IH) } \end{aligned}$
ABS relay 1 (Relay -)	W96	W84	ABS 2 (Relay coil -)
ABS relay 1 (Motor +)	W91	W86	ABS actuator 1 (Motor)
Body earth RH (Earth)	2106	W87	ABS actuator 1 (Earth)
R/B 3 (ABS F/L -)	073	W90	ABS relay 1 (Motor power supply)
Connect to 073-W90	073	W92	ABS relay 2 (Solenoid)
ABS ECU 1 (RR +)	W64	W98	To floor (Wheel sensor RR +)
ABS ECU 1 (RR -)	W50	W99	To floor (Wheel sensor RR -)
ABS ECU 2 ($\mathrm{FL}+$)	W65	W100	ABS sensor LH ($\mathrm{FL}+$)
ABS ECU 2 (FL -)	W51	W101	ABS sensor LH ($\mathrm{FL}-$)
1BS ECU 1 (RL +)	W66	W102	To floor (Wheel sensor RL +)
ABS ECU 1 (RL -)	W52	W103	To lloor (Wheel sensor RL -
ABS ECU 2 (FR +)	W67	W104	ABS sensor RH ($\mathrm{FR}+$)
ABS ECU 2 (FR-)	W53	W105	ABS sensor RH (FR -)
ABS ECU 2 (TC)	W128	W126	Diagnosis (TC)
ABS ECU 1 (TS)	W196	W127	Diagnosis (TS)
Connect to W110-W68	W110	W134	Diagnosis (Diagnosis output)
To engine 2 (L-UP solenoid)	W202	W136	ATT ECU 2 (SL)
A/T shift lock (Key lock solenoid)	W147	W143	Key SW (Key interlock solenoid +)
J/B 4	R38	W144	A/T shijt lock (ACC)
J/C 2	E3A	W146	AT shift lock (STOP)
Connect to 2179-726	2179	W148	ATT shift lock (Earth)
Connect to 2179-226	2179	W150	Key SW (Key interlock solenoid -)
jdy earth J/C RH (Earth)	Z14E	W159	ABS ECU 2 (Earth 2)
ABS relay 2 (Sotenoid +)	W94	W192	ABS actuator 2 (Solenoid)
ABS actuator 2 (MT)	W191	W194	ABS ECU 2 (MT)
To floor (Parking brake)	G7A	W195	ABS ECU 1 (Parking brake $S W$)
ABS relay 1 (Motor relay coil)	W95	W197	ABS ECU 2 (Motor relay)
Batted with 2113, 2114	2113	W198	ABS ECU 2 (Front shield earth)
Batted with (A)		W199	ABS ECD 1 (Rear shield earth)
Connect to W110-W68	W110	W200	ABS check 1 (1P female)
ABS relay 2 (W)	W193	W201	ABS check 2 (1P male)
To engine 2 (Pressure solenoid +)	W204	W203	ATT ECJ 2 ($\mathrm{STH}+$)
To engine 2 (Pressure solenoid -)	W206	W205	ATT ECJ 2 (STH-)
T console (0/0 SW)	176	W208	A/T ECJ 1 (O/D)

From		To	
Location	Terminal	Terminal	Location
A/T console (Power)	W215	W213	ATT ECU 1 (Power)
ATT console (Easy)	W216	W214	A/T ECU 1 (Easy)
To engine 2 (T/M SPD -)	W232	W217	AT ECU 1 (SPD1-)
To engine 2 (Cylinder revolution +)	W220	W218	ATT ECU 1 (NC +)
To engine 2 (Cylinder revolution --)	W221	W219	A/T ECU 1 (NC-)
Connect to Z187-W227	2187	W226	Shield earth (Separation)
J/B6 (Earth)	2187	W227	To engine 2 (Engine sensor shield)
Connect to 2187-W227	2187	W228	Shield earth (Separation)
To engine 2 (T/M SPD +)	W231	W230	A/T ECU 1 (SPD1 +)
To engine 2 (EFI VCC)	X190	W233	ATT ECU 2 (VCC)
To engine 2 (EFI VTH)	X192	W235	AT ECU 2 (VTH)
To engine 2 (EFI E20)	X193	W236	ATT ECU 2 (E2)
EFI ECU (TC)	X194	W237	A/T ECU 1 (TC)
Meter 1 (Check engine)	X1	X2	EFI ECU (W)
Meter (Vehicle speed sensor)	X3	X4	EFI ECU (Vehicle speed sensor)
Connect to K28-K29	K28	X15	Diode 1 (Defogger)
J/C 1	A13A	X16	Diode (Headlight)
Diode 1 (OUT)	X17	$\times 18$	EFI ECU (PSW)
To A/C 1 (Amp. ACS2)	K175	X19	EFI ECU (AC)
Diagnosis (VF)	$\times 20$	$\times 21$	EFI ECU (VF)
J/B6 (Slarter fuse -)	M11	X22	EFI ECU (Starter)
EFI ECU (T1)	246	X57	Diagnosis (Check terminal)
To engine 2 (Engine earth)	249	X78	EFF ECU (AM)
Connect to X1~X2	X1	X109	Diagnosis (EFI output)
EFI ECU (DSW 2)	$\times 124$	$\times 150$	Diode 2 (N)
Connect to $\times 240-\mathrm{K8}$	$\times 240$	$\times 160$	Diode 2 (Heater control SW)
To engine 2 (Alternator C)	098	X195	EFI ECU (Alternator C)
Alternator (Coil -)	092	X226	EFI ECU (ALTC)
Heater reiay (Coil -)	K13	$\times 247$	Diode 6 (t)
Connect to $\mathrm{Z3}$-214B	23	27	To floor (Earth)
J/B 5 (Earth)	2181	28	Meter 2 (Power earth)
J/B 6 (Earth)	2188	211	Brake fluid level SW (Earth)
Body earth RH (Earth)	Z3	Z14B	Body earth J/C RH (Earth)
Body earth J/C LH (Earth)	215C	214 C	Body eath J/C RH (Earth)
Body earth LH (Earth)	24	215B	Body earth J/C LH (Earth)
Connect to 215C-214C	215C	221	Heater control (Heater control SW earth)
J/B 5 (Earth)	2179	226	A/T console (Illumi - -)
Body earth J/C RH (Earth)	2140	230	To instrument panel 1 (Radio earth)
Body earth RH (Earth)	2106	232	To A/C 2 (CDS motor)

From		To	
Location	Terminal	Terminal	Location
Connect to 2106-W87	2106	Z32	To A/C 2 (CDS motor)
Connect to 24-215B	24	241	To courtesy (Earth)
Body earth LH (Earth)	2195	245	R/B 2 (R/B earth)
Connect to Z15C-214C	215C	263	J/B6 (Earth)
Connect to 215C-214C	Z15C	275	$\begin{aligned} & \text { Mulli-courtesy SW } \\ & \text { (Earth) } \end{aligned}$
J/B6 (Earth)	Z186	280	Dim-dip relay (Earth)
Body earth J / C LH (Earth)	Z15E	285	Meter 2 (Gauge earth)
Connect to 2106~W87	2106	2105	ABS relay 2 (Earth)
Batted with W198	W198	2114	Shield earth (Separation)
Batted wilh W198	W198	2114	Shield earth (Separation)
Batled with (A)		2116	To floor (Shieid earth)
Connect to Z3-2148	23	2145	Clearance RH (Earth)
Connect to 24~Z15B	24	2146	Clearance LH (Earth)
Body earth J/C RH (Earth)	214A	Z152	Heater relay (Stop earth)
Body earth J/C LH (Earh)	2150	2168	ATT ECU 2 (E11)
Connect to 215D-Z168	2150	2169	ATT ECU 2 (E12)
Body earth J / C L.H (Earth)	215D	2170	AT ECU 2 (E01)
Connect to Z150-2168	2150	2175	A/T ECU 2 (E02)
Connect to 2179-Z26	2179	2183	AT console (0/D SW earth)
Connect to 215A-K7	215A	2184	Diagnosis (Earth)
Connect to 23-214B	23	2210	Buzer (-)

VIRE CONNECTION, COWL, CARB. L.H.D.

From		T0	
Location	Terminal	Terminal	Location
J/B 6 (Headlight fuse LH -)	A1	A2	Headlight LH (+)
Connect to A7-A17	A7	A3	Headight LH (Hi)
Connect to A8-A18	A8	A4	Headlight LH (L0)
Connect to A6-A11A	A6	A10	Meter 1 (Bearn +)
J/B 6 (Headlight fuse RH -)	A5	A10A	J/C 1
Connect to A7-A17	A7	A11	Meter 1 (Beam-)
Headight RH (+)	A6	A11A	J/C 1
Headlight RH (Hi)	A7	A17	Multi-control SW (Dimmer Hi)
Headlight RH (L0)	A8	A18	Multi-control SW (Dimmer Lo)
To engine 1 (FL main -)	04	A22	Multi-control SW (Lighting SW +)
Multi-control SW (Lighting SW -)	A23	A24	J/B 3 (Lighting SW)
J/B 5 (Tail fuse -2)	C11	C1A	J/C 2
Meter 1 (Illumi. +)	C21	C2A	J/C2
Connect to 018~012	018	C4	$\begin{aligned} & \text { Muiti-control SW (Tail } \\ & \text { SW +) } \end{aligned}$
J/B 4 (Tail fuse -1)	C9	C10	Clearance RH (+)
J/B 4 (Tall fuse -)	C6	C12	Clearance LH (+)
J/C 2	C4A	C27	AT console (llumi. +)
Connect to D3A-D2	D3A	C29	To instrument panel 1 (Clock +B)
Multi-Control SW (Rear fog -)	C37	C38	To instrument panel (Rear log SW)
$\begin{aligned} & \text { Muiti-control SW (Tail } \\ & \text { SW -) } \end{aligned}$	C13	C45	J/B (Tail fuse +)
To instrument panel 2 (Rear fog SW -)	C39	671	To floor (Rear fog RH +)
J/B 6 (Tail LH, power supply)	C80	0102	J/B 5 (Tail fuse -)
J/B6 (Fog fuse -)	C56	C103	Multi-control SW (Rear $\log +1$
Connect to C21~C2A	C21	C112	Heater control (lliumi. +)
Connect to Z192-G3	2192	C113	Heater control (illumi. earth)
J/C 1	H5A	C114	Tail buzzer (IG +)
Connect to C80-6102	C80	C115	Tail buzer (Tail)
J/B 4 (Dome fuse -)	D34	D2A	J/C2
To interior lamp (Room) lamp +)	D2	D3A	J/C 2
Connecl to D3-09	03	D8	To floor (Courtesy SW, RR)
To interior lamp (Room lamp -)	D3	D9	To courtesy 1 (Courtesy SW, RL)
To courtesy 1 (Courtesy SW FL)	D7	D16	Tail buzzer (Couttesy SW)
Connect to D3-D9	03	D30	Tail buzzer diode (+)
Connect to 07-016	07	D31	Tail buzzer diode (-)

From		To	
Location	Terminal	Termina!	Location
To courlesy 1 (Stop lamp)	E14	E1A	J/C 2
Stop lamp SW (-)	E11	E2A	J/C 2
Horn	E26	E4	Multi-control SW (Horn SW)
J/B 5 (Stop lamp tuse -)	E9	E10	Stop lamp SW (+)
J/B 5 (Horn fuse -)	E1	E25	Horn (+)
To instrument panel 1 (Hazard SW)	F42	F2	Meter 2 (Red hazard)
$\mathrm{J} / \mathrm{B} 4$ (Front turn LH)	F8	F9	Front turn LH (+)
Connect to 24-215B	24	F10	Front turn LH (Earth)
J/B 4 (Side turn LH)	F44	F11	Side turn $\mathrm{LH}(+)$
Connect to 24-215B	24	F12	Side turn LH (Earth)
J/B 4 (Front turn RH)	F13	F14	Front turn $\mathrm{RH}(+)$
Body earth RH (Earth)	2106	F15	Front turn RH (Earth)
Connect to 2106-232	2106	F15	Front turn RH (Earth)
J/B 4 (Side turn RH)	F43	F16	Side turn RH (+)
Connect to Z3-Z148	Z3	F17	Side turn RH (Earth)
J/B 5 (indicator LH)	F18	F19	Meter 2 (Indicator LH +)
J/B 5 ((ndicator RH)	F20	F21	Meter 2 (Indicator RH +)
To instrument panel 2 (Hazard SW -)	F38	F26	J/B 4 (Fiasher relay B)
J/B 4 (Hazard fuse -)	F40	F35	To instrument panet (Hazard SW TB)
J/B 4 (Flasher relay L)	F27	F41	To instrument panel 2 (Hazard SW +)
To instrument panel 2 (Hazard SW TR)	F36	F45	J/B 5 (Hazard RH)
To instrument panel 2 (Hazard SW TL)	F37	F46	J/B 5 (Hazard LH)
$\begin{aligned} & \text { To floor (Back-up lamp } \\ & \text { RH }- \text {) } \end{aligned}$	G15	G1A	J/C 2
To engine 2 (Back-up SW)	G2	G2A	J/C 2
J/B 5 (Earth)	2192	G3	To engine 2 (Back lamp SW earth)
Meter 2 (Parking brake)	G9	G7	To courlesy (Parking brake)
$\mathrm{J} / \mathrm{C} 1$	G13A	G7	To courtesy 1 (Parking brake)
Brake fluid SW (+)	G8	G11A	J/C 1
Meter 2 (Brake)	G6	G12A	J/C 1
J/B 5 (Gauge fuse -)	H 1	H1A	J/C 1
Meter 1 (IG)	H2	H2A	J/C 1
Meter (0il pressure)	H5	H6	To engine (Oil pressure SW +)
Meter (T gauge)	H20	H21	To engine (Coolant temp. sender +)
Meter (F gauge)	H22	H23	To courtesy 1 (Fuel sender +
Meter 2 (0/0 0FF)	H50	H51	A/T ECU 2 (0/D 0FF)
Connect to W215-W213	W215	H53	Meter 2 (PWR)

HW-48

From		T0	
Location	Terminal	Terminal	Location
Connect to K28-K10A	K28	H55	Meter (Defogger indicator)
To courtesy 1 (Sheel bell SW)	H19	H56	Meter 1 (Sheet belt indicator)
Connect to 121-122	121	12	Front washer motor (t)
Front washer motor (-)	13	14	Multi-control SW (Washer molor +)
Mulli-control SW (Front wiper SW L0)	111	118	Front wiper motor (L0)
Mulli-control SW (Front wiper SW Hi)	112	120	Front wiper motor (Hi)
J/B6 (Wiper fuse --)	121	122	Front wiper motor (Cam $\mathrm{SW}+$)
Multi-control SW (Front wiper SW OFF)	113	124	Front wiper motor (Cam SW common)
\qquad $\begin{aligned} & 10 \\ & -1 \end{aligned}$	127	128	To instrument panel 1 (Rear washer SW +)
To iloor (Wiper motor \rightarrow)	130	131	To instrument panel 1 (Rear wiper SW +)
Heater relay (Contact point -)	K11	K2	Blower motor (+)
Connect to K30-K4	K30	K3	Blower resister (+)
Blower molor (-)	K30	K4	Heater control (Hi)
Blower resistor (M1)	K5	K6	Heater control (M1)
Comnect to Z3-214B	Z3	K7	Blower resister (Earth)
J/B 6 (Heater fuse -)	K1	K10	Heater relay (Contact point +)
To instrument panel 2 (Defogger SW -)	K28	K10A	J/C 1
To fioor (Defogger +)	K29	K11A	J/C 1
J/C 1	H6A	K12	Heater relay (Coil +)
Connect to K11~K2	K11	K14	A/C luse (+)
Connect to K129~K151	K129	K18	VSV (VSV +)
Diode 6 (-)	X249	K20A	J/C 2
Heater control (L0)	K8	K21A	J/C 2
To AC 1 (Amp. Magnet clutch)	K50	K22	To A/C 2 (Magnet clutch)
J/B 6 (Defogger fuse -)	K26	K27	To instriment panel 2 (Defogger SW +)
Blower resistor (M2)	K41	K42	Heater control (M2)
Connect to K156-K179	K156	K96	To engine 2 (2-way coolant temp. SW)
J/6 5 (Earth)	2189	K109	To A/C 1 (Amp. earth)
Connect to K129-K151	K129	K145	To AC 2 (Dial pressure SW +)
To A/C 2 (Dual pressure SW-)	K146	K150	To A/C 1 (Amp. contact point +)
To ACC 1 (Amp. power supply)	K129	K151	A/C fise (-)
Radiator lan motor (-)	L1	K153	A/C relay No. 2 (Contact point +)
J/C 2	N4A	K155	To A/C 2 (A/C relay No. 1 coil +)
J/C 1	N20A	K157	To A/C 1 (Tachometer pulse)

From		To	
Location	Terminal	Terminal	Location
J/C 2	K22A	K160	Diode 5 (Heater)
A/C relay No. 2 (Coil -)	K156	K179	To A/C 2 (Pressure SW)
To A/C 2 (CDS motor +)	K181	K180	ACC relay No. 2 (Contact point-)
J/C1	L4A	K182	To AC 1 (A/C amp. relay -)
VSV (VSV -)	K19	K185	To A/C 1 (Amp. VSV No. 1-)
To A/C 1 (Amp. A/C cut)	K138	K188	To engine 2 (A/C coolant temp. cut SW)
Radiator fan relay (Coil -1	L4	L1A	J/C 1
$\begin{aligned} & \text { To engine } 1 \text { (Radiator } \\ & \text { fan } \mathrm{SW}_{+ \text {) }} \end{aligned}$	L2	L2A	J/C 1
Connect to N4A-K155	N4A	13	A/C relay No. 2 (Coil +)
J/C 1	L3A	L12	Diode 2 (Radiator fan)
To engine 1 (Radiator $\tan \mathrm{FL}-1$	0101	L.19	Radiator fan relay (Contact point +)
IG SW (ST)	M1	M2	To engine 1 (Starter)
To engine 2 (Alternator IG)	019	N1A	J/C 2
IG SW (GG1)	N1	N2	J/B2 (IG fuse +)
J/B6 (Engine fuse --)	N31	N2A	$\mathrm{J} / \mathrm{C} 2$
J/C2	N5A	N5	IG coil (IG)
Radiator fan relay	014	N6A	J/C2
Conmedt to N7~N21A	N7	N8	To engine 1 (Distributor IG pulse)
IG coil (Distributor)	N7	N21A	J/C 1
Meter 1 (Tachometer puise)	N11	N22A	J/C 1
IG SW (IG2)	N30	N38	J/B 2 (IG2 fuse +)
J/C1	H4A	N50	Diagnosis (IG +)
J/C 2	N7A	N57	Condenser (+)
To engine 1 (Atternator +B)	018	012	Confront wit 012X
Batted with 012	012	012X	IG SW (AM)
Connect to 04-A22	04	013	J/B 3 (Horn hazard luse -)
Radiator fan relay (Contact point -)	017	015	Radiator fan motor (+)
Meter (Charge lamp -)	020	021	To engine 2 (Alternator b)
To engine 2 (CDS FL -)	083	032	To AC 2 (A/C relay No. 1 contact point +)
Connect to 018-012	018	095	J/B1 (AM-related fuse +)
$\mathrm{J} / \mathrm{C} 2$	01A	097	ATT ECU 2 (BATT)
Connect to 018-012	018	P9	To courtesy 1 (Power No. $130 \mathrm{~A}+$)
$\text { To courtesy } 1 \text { (No. } 2$ $C / B 30 A-1$	P21A	P11	To interior lamp (Canvas top motor +)
J/B4 (Earth)	2193	P12	To interior lamp \Canvas top motor -)
Connect to $\mathrm{N} 1-\mathrm{N} 2$	N1	P20	To courtesy 1 (Power No. $2 \mathrm{C} / \mathrm{B} 30 \mathrm{~A}+$)
IG SW (ACC)	R1	R2	J / B (ACC -related fuse +)

HW-50

From		T0	
Location	Terminal	Terminà	Location
Body earth RH (Earth)	2106	232	To A/C 2 (CDS molor)
Connect to 24-215B	24	241	To courlesy (Earth)
Body earth LH (Earth)	2195	245	A/C relay No. 2 (Contact point -)
Connect to 215C~214C	215C	263	J/B 6 (Earth)
Connect to Z15C~214C	215C	275	Multi-control SW (Earth)
Body earth J/C LH (Earth)	Z15D	285	Meter 2 (Gauge earth)
Connect to Z3-2148	23	2145	Clearance RH (Earth)
Connect to $24-2158$	24	2146	Clearance LH (Earth)
Body earth J/C LH (Earth)	215A	2152	Heater relay (Stop earth)
Body earth J/C RH (Earth)	215E	2167	Idie up relay (Earth)
Body earth J/C RH (Earth)	2140	2168	AIT ECU 2 (E11)
Connect to 2140-2168	214 D	2169	A/T ECU 2 (E12)
Body earth J/C RH (Earth)	214D	2170	AT ECU 2 (E01)
Connect to 2140~2168	Z14D	2175	AT ECU 2 (E02)
Connect to Z179-226	2179	2183	$\begin{aligned} & \text { ATT console }\langle 0 / \mathrm{DSW} \\ & \text { earth) } \end{aligned}$
Body earth J/C RH (Earth)	Z14E	2184	Diagnosis (Earth)
Radiator fan motor (-)	11	2195	Body earth LH (Earth)
Connect to 23-214B	23	2210	Tail buzzer (-)

VIRE CONNECTION, COWL, CARB. R.H.D.

From		T0	
Location	Terminal	Terminal	Location
$\mathrm{J} / \mathrm{B} 6$ (Headight fuse LH -)	A1	A2	Headlight LH (+)
Connect to A7~A17	A7	A3	Headlight L.H (Hi)
Connect to AB~A18	A8	A4	Headlight L.H (L0)
Connect to A6-A11A	A6	A10	Meter 1 (Beam +)
J/B 6 (Headlight fuse RH -	A5	A10A	J/C 1
Connect to A7-A17	A7	A11	Meter 1 (Beam-)
Headlight RH (+)	A6	A11A	J/C 1
Headlight RH (Hi)	A7	A17	Multi-control SW (Dimmer Hi)
Headight RH (Lo)	A8	A18	Multi-control SW (Dimmer Lo)
To engine 1 (FL main -)	04	A22	Multi-control SW (Lighting SW +)
Muiti-conitol SW (Lighting SW -)	A23	A24	J/B 3 (Lighting SW)
J/B 5 (Tail fuse -2)	C11	C1A	$\mathrm{J} / \mathrm{C} 2$
Meter 1 (Illumi. +)	C21	C2A	$\mathrm{J} / \mathrm{C} 2$
Connect to 018-012	018	C4	Multi-controlled SW (Tail SW +)
J/B 4 (Tail fuse -1)	C9	C10	Clearance RH(+)
J/B 4 (Tail fuse -)	C6	C12	Clearance LH (+)
J/C 2	C4A	C27	ATT console (Illumi. +)
Connect to D2-D3A	D2	C29	To instrument panel (Clock +B)
Multi-conitrol SW (Tail SW-)	C13	645	J/B (Tail fuse +)
To instrument panel 1	2166	C65	Meter 1 (Hlumi. -)
J/B 6 (Tail LH power supply)	C80	C102	J/B 5 (Tail fuse -)
Connect to C21~C2A	C21	C112	Heater Control (lliumi. +)
Connect to Z166-C65	2166	C113	Heater control (lllumi. earth)
Connect to H2-H2A	H2	C114	Tail buzzer (IG +)
Connect to C80-C102	C80	C115	Tail buzzer (Tail)
J/B 4 (Dome fuse -)	D34	D2A	J/C 2
To interior lamp (Room lamp +)	D2	D3A	J/C 2
Connect to D3-D9	D3	D8	To floor (Courtesy SW RR)
To interior lamp (Room lamp -)	D3	D9	To courtesy 1 (Courtesy SW RL)
$\begin{aligned} & \text { To courtesy } 1 \text { (Courtesy } \\ & \text { SW FL) } \end{aligned}$	07	016	$\begin{aligned} & \text { Tail buzzer (Courtesy } \\ & \text { SW) } \end{aligned}$
To floor (Stop lamp)	E14	E1A	J/C 2
Stop lamip SW (-)	E11	E2A	J/C 2
Horn (-)	E26	E4	Muiti-control SW (Horn SW)
J/B 5 (Stop fuse -)	E9	E10	Stop lamp SW (+)
J/B 5 (Horn fuse -)	E1	E25	Horn (+)
To instrument pane! (Hazard SW)	F42	F2	Meter 2 (Red hazard)

From		To	
Location	Terminal	Terminal	Location
J/B 4 (Front turn L.H)	F8	F9	Front turn LH (+)
Connect to $74 \sim 215 B$	24	F10	Front turn LH (Earth)
$\mathrm{J} / \mathrm{B} 4$ (Side turn L.H)	F44	F11	Side turn LH (+)
Connect to Z4~Z15B	24	F12	Side lurn LH (Earth)
$\mathrm{J} / \mathrm{B} 4$ (Front turn RH)	F13	F14	Front turn $\mathrm{RH}(+)$
Connect to Z3-Z14B	Z3	F15	Front turn RH (Earth)
J/B 4 (Side turn RH)	F43	F16	Side turn RH (+)
Connect to Z3-Z2148	23	F17	Side turn RH (Earth)
J/B 5 ((ndicator LH)	F18	F19	Meter 2 (Indicator LH +)
J/B 5 (Indicator RH)	F20	F21	Meter 2 (Indicator $\mathrm{RH}+$)
To instrument panel 2 (Hazard SW -)	F38	F26	J/B 4 (Fiasher relay B)
J/B 4 (Hazard fuse -)	F40	F35	To instrument panel 2 (Hazard SW + B)
J/B 4 (Flasher -L)	F27	F41	To instrument panel 2 (Hazard SW +)
To instrument panel 2 (Hazard SW TR)	F36	F45	J/B 5 (Hazard RH)
To instrument pane: 2 (Hazard SW TL)	F37	F46	J/B 5 (Hazard LH)
To floor (Back lamp RH -)	G15	G1A	J/C 2
To engine 2 (Brake lamp SW)	G2	G2A	J/C 2
J/B 5 (Earth)	2192	G3	To engine 2 (Back lamp SW earth)
Connect to 66-68	G6	G7	To floor (Parking brake)
Meter 2 (Brake)	G6	68	Brake fluid level SW(+)
J/B 5 (Gauge fuse -)	H1	H1A	J/C 1
Meter 1 (IG)	H2	H2A	J/C 1
Meter 1 (0il pressure)	H5	H6	To engine 2 (0il pressure $S W+$)
Meter 2 (Temp. gauge)	H 2 O	H21	To engine 2 (Coolant temp. sender +)
Meter 1 (Fuel gauge)	H22	H23	To countesy 1 (Fuei sender +)
Meter 2 (0/D OFF)	H50	H51	A/T ECU 2 (O/D OFF)
Connect to W215-W213	W215	H53	Meter 2 (PWB)
Connect to K28-K10A	K28	H55	Meter 2 (Defogger indicator)
Connect to 121-122	121	12	Front washer motor (+)
Front washer motor (-)	13	14	Multi-control SW (Washer motor +)
Multi-control SW (Front wiper SW Lo)	111	118	Front wiper motor (Lo)
Multi-control SW (Front wiper SW Hi)	112	120	Front wiper motor (Hi)
J/B6 (Wiper fuse -)	121	122	Front wiper motor (Cam SW +)
Multi-control SW (Front wiper SW OFF)	113	124	Front wiper motor (Cam SW common)
To floor (Washer motor)	127	128	To instrument panel 1 (Rear washer SW +)

From		To	
Location	Terminal	Terminal	Location
To floor (Wiper molor)	130	131	To instrument panel 1 (Rear wiper SW +)
Heater relay (Conlact point -)	K 11	K2	Blower motor (+)
Connect to K30~K4	K30	K3	Blower resister (+)
Blower motor (-)	K30	K4	Heater control (Hi)
Blower resister (M1)	K5	K6	Heater control (M1)
Body earth J/C LH (Earth)	Z15C	K7	Blower resister (Earth)
J/B6 (Heater fuse -)	K1	K10	Heater relay (Contact point +)
To instrument panel 2 (Detogger SW -)	K28	K10A	J/C 1
To floor (Defogger +)	K29	K11A	J/C 1
Connect to H2-H2A	H2	K12	Heater relay ($\mathrm{Coil}+$ +
Connect to K11~K2	K11	K14	A/C fuse (t)
Connect to K129-K151	K129	K18	VSV (+)
Diode $6(-)$	018	K20A	J/C2
Heater control (L0)	K8	K21A	J/C2
To A/C 1 (Amp., Magnet clutch)	K50	K22	To A/C 2 (Magnet clutch)
J/B6 (Defogger fuse -)	K26	K27	To instrument panel 2 (Defogger SW +)
Blower resister (M2)	K41	K42	Heater controi (M2)
Connect to K156-K179	K156	K96	To engine 2 (2-way coolant temp. SW)
J/B 5 (Earth)	2189	K109	To A/C 1 (Amp. earth)
Connect to K129-K151	K129	K145	To A/C 2 (Dual pressure SW +)
To AC 2 (Dual pressure SW-1	K146	K150	To AC 1 (Amp. conlact point +)
To A/C 1 (Amp. power supply)	K129	K151	A/C fuse (-)
Radiator fan motor (-)	L1	K153	A/C relay No. 2 (Contact point +)
J/C 2	N4A	K155	To A/C 2 (A)C relay No. 1 coil +)
Connect to $77 \sim$ N11	N7	K157	To A/C 1 (Tachometer pulse)
A/C relay No. 2 (Coil -)	K156	K179	To AC 2 (Pressure SW)
To A/C 2 (CDS motor +)	K181	K180	A/C relay No. 2 (Contact point -)
Connect to L4-L1A	14	K182	To A/C 1 (AC amp. relay --)
VSV (VSV -)	$K 19$	K185	To A/C 1 (Amp. VSV No. 1-)
To A/C 1 (AMP A/C cut)	K138	K188	To engine 2 (ACC coolant temp. cut SW)
Radiator fan relay (Coil -1	L4	L1A	J/C 1
To engine 2 (Radiator fan $S W+$)	L2	L2A	J/C 1
Connect to N4A~K155	N4A	L. 3	A/C relay No. 2 (COil +)
$\mathrm{J} / \mathrm{C} 1$	L.3A	L12	Diode 2 (Radiator fan)

From		T0	
Location	Terminal	Terminal	Location
To engine 1 (Radiator fan $\mathrm{FL}-$)	0101	L19	Radiator fan relay (Conlact point +)
IG SW (Starter)	M1	M2	To engine 1 (Starter)
To engine 2 (Alternator IG)	019	N1A	J/C 2
IG SW (IG1)	N1	N2	J/B2 (IG fuse +)
J/B 6 (Engine fuse -)	N31	N2A	J/C 1
J/C 2	N5A	N5	IG coil (IG)
Radiator tan relay	014	N6A	J/C 1
Connect to $\mathrm{N} 7-\mathrm{N} 11$	N7	N8	To engine 1 (Distribulor IG pulise)
IG coil (Distributor)	N7	N11	Meter (lachometer puise)
IG SW (!G2)	N30	N38	J/B2 (IG2 fuse +)
J/C 1	H4A	N50	Diagnosis (IG +)
J/C2	N7A	N57	Condenser (+)
To engine 1 (Alternator +B)	018	012	Batted with 012X
Batter with ~012	012	012 X	IG SW (AM)
Connect 10 04-A22	04	013	J/B 3 (Horn hazard fuse -)
Radiator fan relay (Contact point -)	017	015	Radiator fan motor (+)
Meter 2 (Change lamp -)	020	021	To engine 2 (Alternator L)
To engine 1 (CDS FL -)	083	032	To A/C 2 (A/C relay No. 1 contact point +)
Connect to 018-012	018	095	J/B 1 (AM-related fuse +)
J/C 2	D1A	097	A/T ECU 2 (BATT)
Connect to 018-012	018	P9	To floor (Power No. 1 $30 \mathrm{~A}+$)
$\begin{aligned} & \text { To floor (} \mathrm{No} .2 \mathrm{C} / \mathrm{B} 30 \mathrm{~A} \\ & \text {-) } \end{aligned}$	P21A	P11	To interior lamp (Canvas top motor)
Connect to 24-215B	Z4	P12	To interior lamp (Canvas top motor)
Connecl to N 1 - N 2	N1	P20	To floor (Power No. 2 C/B 30A +)
IG SW (ACC)	R1	R2	J/B 3 (ACC-related fuse +)
To instrument panel 1 (Radio FL +)	R6	R7	$\begin{aligned} & \text { To door LH (Speaker FL } \\ & + \text { + } \end{aligned}$
To instrument panel 1 (Radio FL -)	R8	R9	$\begin{aligned} & \text { To door LH (Speaker FL } \\ & \text {-) } \end{aligned}$
To instrument panel 1 (Radio FR +)	R10	R11	To door RH (Speaker FR + +)
To instrument pane! 1 (Radio FR-)	R12	R13	$\begin{aligned} & \text { To door RH (Speaker FR } \\ & \text {-) } \end{aligned}$
To instrument panel 1 (Remote-controlled mirror SW VL)	R18	R22	To door LH (Remote-controlied mirror VL)
To instrument panel 1 (Remote-controlled mirror SW HL)	R20	R23	To door LH (Remote-controlled mirror HL)
To instrument panel 1 (Remote-controlled mirror SW VR)	R19	R24	To door RH (Remote-controlled mirror VR)

From		To	
Location	Terminai	Termina!	Location
To instrument panel 1 (Remote-controlled mirror SW HR)	R21	R25	To door RH (Remote-controlled mirror HR)
To instrument panel 1 (Remote-controlled mirror SW motor)	R17	R26	To door RH (Remote-controlled mirror -1
Connect to R17-R26	R17	R27	To door LH (Remote-controlled mirror -)
To instrument panel 1 (Radio RR +)	R28	R32	To floor (Speaker RR +)
To instrument panel 1 (Radio RR -)	R29	R33	To floor (Speaker RiR -)
To instrument panel 1 (Radio RL +)	R30	R34	To courtesy 1 (Speaker RL +)
To instrument panel 1 (Radio RL -) (Radio RL -)	R31	R35	To courtesy 1 (Speaker RL-1
J/C 2	E3A	W3	A/T ECU 2 (BB)
Meter 2 (Easy)	H54	W4	AT ECU 2 (Easy)
To engine 2 (L)	W9	W8	ATT ECU 1 (L)
To engine 2 (2)	W11	W10	ATT ECU 1 (2)
To engine 2 (D)	W13	W12	AT ECU 1 (D)
To engine 2 (N)	W15	W14	A/T ECU 1 (N$)$
J/C2	G3A	W16	ATT ECU 2 (R)
To engine 2 (P)	W18	W17	AT ECU 2 (P)
To engine 2 (Throttle VCC)	X42	W19	ATT ECU 2 (VCC)
To engine 2 (Throttle VTH)	X41	W21	ATT ECJ 2 (VTH)
To engine 2 (Throttle E2)	X39	W23	AT ECU 2 (E2)
To engine 2 (Shift solenoid No. 1)	W28	W27	ATT ECU 2 (S1)
To engine 2 (Shift solenoid No. 2)	W30	W29	ATT ECU 2 (S2)
Diagnosis (T)	W32	W31	A/T ECU 2 (T)
J/B 4 (Fuse ECU IG2-)	W187	W34	A/T ECU 2 (+B)
To engine 2 (Coolant temp. SW +)	W207	W42	ATT ECU 1 (WTH)
Connect to H54-W4	H54	W45	Diagnosis (ATT output)
Connect to W13-W12	W13	W117	Diode 3 (Shitt D)
Connect to W11~W10	W11	W118	Diode 3 (Shift 2)
Connect to W9-W8	W9	W119	Diode 4 (Shift L)
Connect to G3A W16	G3A	W120	Diode 4 (Shift R)
Connect to X9-X152	X9	W121	Diode 3 (IN)
Connect to X9-X152	X9	W122	Diode 4 (IN$)$
To engine 2 (L-UP solenoid)	W202	W136	A/T ECU 2 (SL)
To engine 2 (Pressure solenoid +)	W204	W203	A/T ECU 2 (STH +
To engine 2 (Pressure solenoid -)	W206	W205	A/T ECU 2 (STH-)
AT console (0/0 SW)	V76	W208	AT ECU 1 (0D)
A/T console (PWR)	W215	W213	ATT ECU 1 (PWR)
$\sqrt{\text { T console (Easy) }}$	W216	W214	A/T ECU 1 (Easy)

From		To	
Location	Terminal	Terminal	Location
To engine 2 (T/M SPD -)	W232	W217	ATT ECU 1 (SPD1-)
To engine 2 (Cylinder revolution +)	W220	W218	A/T ECU 1 ($\mathrm{NC}+$)
To engine 2 (Cylinder revolution -)	W221	W219	ATT ECU 1 (NC-)
Connect to Z187~W227	2187	W226	Shield earth (Separation)
J/B 6 (Earlh)	2187	W227	To engine 2 (Engine sensor shield)
Connect to 2187-W227	2187	W228	Shield earth (Separation)
To engine 2 (TM SPD +)	W231	W230	A/T ECU 1 (SPD1 +)
J/C 1	K12A	X15	Diode 1 (DEF)
J/C 1	A12A	X16	Diode 1 (Headlight)
Connect to X9-X152	X9	X150	Diode 5 (+)
To engine 2 (VSV-)	X9	X152	Idle up relay (Contact point +)
Diode 1 (OUT)	X17	X153	I/UP relay (Coil +)
J/C 2	K22A	X160	Diode 5 (Heater)
Connect to $\times 9-\times 152$	X9	X169	Diode 2 (+)
AT ECU 1 (ACT)	2171	X181	To A/C 1 (ACT)
Heater relay (Coil -)	K13	X247	Diode 6 (+)
Connect to Z3-Z14B	23	27	To floor (Earth)
J/B 5 (Earth)	2181	28	Meter 2 (Power earth)
J/B6 (Earth)	2188	211	Brake fluid level SW (Earth)
Body earth RH (Earth)	23	2148	Body earth J/C RH (Earth)
Body earth J/C LH (Earth)	215C	214C	Body earth J/C RH (Earth)
Body earth LH (Earth)	Z4	2158	Body earth J/C LH (Earth)
Connect to 215C~214C	215C	221	Heater control (Heater control SW earth)
J/B 5 (Earth)	2179	226	A/t console (illumi. -)
Body earth J/C RH (Earth)	Z14D	230	To instrument panel 1 (Radio eath)
Body earth RH (Earth)	2106	Z32	To A/C 2 (COS motor)
Connect to Z4-Z15B	24	241	To courtesy (Earth)
Body earth LH (Earth)	2195	245	A/C relay No. 2 (Contact point -)
Connect to Z15C~214C	215C	263	J/B6 (Earth)
Connect to 215C-Z14C	215C	275	Multi-control SW (Earth)
Body earth J/C LH (Earth)	215E	285	Meter 2 (Gauge earth)
Connect to Z3-Z14B	23	2145	Clearance RH (Earth)
Connect to $24-\mathrm{Z} 15 \mathrm{~B}$	24	2146	Clearance LH (Earth)
Body earth J/C LH (Earth)	Z14A	Z152	Heater relay (Stop earth)
Connect to 2179-226	2179	2167	lUPP relay (Earth)
Body earth J/C LH (Earth)	2150	2168	AT ECU 2 (E11)
Connect to 215D-2168	2150	2169	A/T ECU 2 (E12)
Body earth J/C LH (Earlh)	2150	2170	ATT ECU 2 (E01)

From		To	
Location	Terminal	Terminal	Location
Connect to Z15D-Z168	Z15D	Z175	A/T ECJ 2 (E02)
Connect to Z179-Z26	Z179	Z183	A/T console (0/D SW earth)
Body earth J/C RH (Earth)	Z14E	Z184	Diagnosis (Earth)
Connect to Z3-Z14B		Z210	Buzzer (-)

'NIRE CONNECTION, INSTRUMENT PANEL

From		To	
Location	Terminal	Termina!	Location
Rool antenna (Motor)	R109		Connect to R40-R55
Connect to C15-C106	C15	C20	Ashtray illumi. (+)
Connect to C15-C106	C15	C22	Clock (Dimmer +)
J/B (Fuse, fog)	C56	C23	Front fog SW (+)
Rear fog (RH +)	C25	C24	Front fog SW (-)
Connect to C15-C106	C15	C28	Radio (lliumi. +)
Connect to D43-C30	D43	C29	Clock (Back-up)
Connect to D43-C30	D43	C29	Clock (Back-up)
Connect to D51-C30	D51	C29	Clock, break
J/B (Fuse, dome)	D43	C30	Radio (Back-up)
Break terminal (-)	D51	C30	Radio, back-up
Mutiti-control SW (RF)	C37	C38	Rear fog lamp SW (+)
Rear fog lamp RH (+)	C71	C39	Rear fog lamp SW (-)
J/B (Fuse, tail)	C15	C43	Rheostat (T)
Connect to Z31-Z166	C107	C44	Rheostat (L)
J/B (Fuse, tail)	C15	C106	Hazard SW (Illumi. +)
Connect to Z31~2166	231	C107	Hazard SW (litumi. earth)
Connect to Z31~Z166	231	C113	Heater control illumi. (-)
J/B (Fuse, dome)	D43	D50	Break terminal (+)
Fuse, hazard	F40	F35	Hazard SW (Hazard +)
J/B (Hazard RH)	F45	F36	Hazard SW (TR)
J/B (Hazard LH)	F46	F37	Hazard SW (TL)
Flasher relay +	F26	F38	Hazard SW (Hazard L)
Flasher relay L	F27	F41	Hazard SW (TB)
Meter (Red hazard)	F2	F42	Hazard SW (Red hazard)
Fuse, turn	F47	F49	Hazard SW (Turn cancel)
Connect to K28-K29	K28	H55	Meter (Defogger indicator)
Rear washer motor (-)	127	128	Rear wiper SW (Rear washer)
Rear wiper motor (-)	130	131	Rear wiper SW (Rear wiper)
Fuse, delogger	K26	K27	Defogger SW (+)
Rear, defogger +	K29	K28	Defogger SW (-)
J/B (Fuse, radio)	R3	R4	Radio (ACC power source)
Connect to R14-R15	R14	R5	Clock (Indicator +)
Speaker Fr LH (FL +)	R7	R6	Radio (Speaker FL +)
Speaker Fr LH (FL-)	R9	R8	Radio (Speaker FL -)
Speaker Fr RH (FR +)	R11	R10	Radio (Speaker FR +)
Speaker Fr RH (FR -)	R13	R12	Radio (Speaker FR --)
J / B (Fuse, cigarette lighter)	R14	R15	Cigarette lighter (+)
Connect to R14~R15	R14	R16	Remote-controlled door mirror $S W$ (+B)
Door mirror RH (C)	R26	R17	Remote-controlled door mirror SW (C)
Door mirror LH (VL)	R22	R18	Remote-controlled door mirror SW (VL)
Door mirror RH (VR)	R24	R19	Remote-controlled door mirror SW (VR)

From		To	
Location	Terminal	Terminal	Location
Door mirror LH (HL)	R23	R20	Remote-controlled door mirror SW (HL)
Door mirror RH (HR)	R25	R21	Remote-controlled door mirror SW (HR)
Speaker Rr RH ($\mathrm{RR}+$)	R32	R28	Radio (Speaker RR +)
Speaker Rr RH (RR -)	R33	R29	Radio (Speaker RR -)
Speaker Rr LH (RL +)	R34	R30	Radio (Speaker RL +)
Speaker Rr LH (RL-)	R35	R31	Radio (Speaker RL-)
Electric-powered antenna (RX)	R40	R55	Radio (Electric-powered antenna RX)
Connect to R11~R10	R11	R56	Instrument panel. speaker (+)
Connect to R13~R12	R13	R57	Instrument panel, speaker (-)
Centre speaker (+)	R60	R62	DSP (Centre speaker +)
Centre speaker (-)	R61	R63	OSP (Centre speaker -)
Connect to 231-2166	231	218	Rear wiper SW (Earth)
Connect to 231-2166	231	224	Ashtray illumi. (Earth)
Connect to Z31-2166	231	Z25	Clock (Earth)
Body earh (Cow, Inner Right)	214	230	Radio (GND)
Connect to Z31~Z166	Z31	243	Rear fog iamp SW (ON indicator earth)
Connect to 243		244	Rheostat (-)
Connect to 231~2166	231	262	Remote-controlled mirror SW (Earth)
Cigarette lighter (Earth)	231	2166	J / B (Instrument panel earth)

WIRE CONNECTION, rLUUH

From		To	
Location	Terminal	Terminai	Location
To cowl 2 (ABS ECU, shielded earth)	Z110		Connected with - 2110
J/B (Tail fuse -, floor 1)	C2	C7	Rear combination lamp RH, Tail lamp (+)
J/B (Tail fuse -, lloor 2)	C5	C8	Rear combination lamp LH, Tail lamp (+)
Connect to C2~C7	C2	C16	License plate lamp (+)
To cowl 1 (Key buzzer courtesy SW)	C116	D6	Couttesy SW FR
To cowl 1 (Room lamp. door -)	D3	D8	Courtesy SW FR
Courtesy SW, back door	D10	D12	Luggage room lamp (-)
Connect to D3~08	03	D30	Diode (+)
Connect to C115-D6	C116	D31	Diode (-)
Luggage room lamp (+)	011	D42	J/B (Dome fuse -)
Connect to E11~E15	E11	E14	Rear combination lamp RH (STOP +)
$\begin{aligned} & \text { To cowl } 1 \text { (Stop lamp } \\ & \text { SW }(-1) \end{aligned}$	E11	E15	Rear combination lamp LH (STOP +)
Connect to E11~E15	E11	E16	To back door (High-mount stop lamp +)
Earth (Body earth, Rr RH)	28	E17	To back door (Earth)
J / B (Rear turn l H)	F4	F5	Rear combination lamp $\mathrm{LH}(+)$
J / B (Rear turn RH)	F6	F7	Rear combination lamp RH (+)
J/B (Back fuse)	F34	G4	Rear combination lamp RH (Back-up lamp +)
Connect to F34-G4	F34	G5	Rear combination lamp LH (Back-up $\operatorname{lamp}+$)
To cowl 1 (Meter, brake warning)	G6	G7	Parking brake (Parking brake SW)
To cowl 1 (Shitt position SW (Reverse))	G2	G15	Rear combination lamp RH (Back-up lamp -)
Connect to G2-G15	G2	G16	Rear combination lamp LH (Back-up lamp -)
To cowl 1 (Meter, sheet belt warning)	H56	H19	Sheet 1, 2
Connect to Z3-Z7	Z3	H59	Sheet 1, 2 (Earth)
J/B (Fuse, wiper)	125	126	Rear washer (Motor +)
To back door (Rear wiper motor +)	129	126	Rear washer (Motor +)
Rear washer (Motor -)	127	128	To cowl 1 (Rear washer SW +)
To back door (Rear wiper motor -)	130	131	To cowl 1 (Rear wiper motor SW +)
$\begin{aligned} & \text { To cowl } 1 \text { (Defogger SW } \\ & - \text {-) } \end{aligned}$	K23	K29	To back door (Defogger +)
To cowl 1 (PN master SW RR (UP))	P32	P34	To rear door RH (PN SW (UP +))
To cowl 1 (PN master SW RR (DOWN))	P33	P35	To rear door RH (PW SW (DOWN +))
$\begin{aligned} & \text { To cowl } 1 \text { (PW master } \\ & \text { SW RR (+B)) } \end{aligned}$	P71	P36	$\begin{aligned} & \text { To rear door RH }(\mathrm{PW} \\ & \mathrm{SW}(+)) \\ & \hline \end{aligned}$

From		To	
Location	Terminal	Terminal	Location
$\begin{aligned} & \text { To cowl 1 (Door lock } \\ & \text { SW, Lock) } \end{aligned}$	05	Q10	To rear door RH (Door lock motor, Lock)
To cowl 1 (Door lock SW, Unlock)	Q3	011	To rear door RH (Door lock motor, Unlock)
To cowl 1 (Radio speaker Rr RH (+))	R28	832	RR speaker (+)
To cowl 1 (Radio speaker $\operatorname{Rr} \mathrm{RH}(-))$	R29	R33	RR speaker (-)
To cowl 1 (Radio RR)	R25	R40	Electric-powered алtenпа (SX)
J/B (Fuse, gauge)	H41	R41	Electric-powered antenna (IG)
J/B (Fuse, cigarette lighter)	R39	R42	Electric-powered antenna (ACC)
To cowl 1 (C/B (-))	R21	R52	Electric-powered antenna $(+B)$
Connect to D11-D42	D11	S44	Sheet 2 (BATT, back-up)
Connect to P21-P52	P21	\$45	Sheet 2 (+B)
Connect to ~H59	Z3	S46	Sheet 2 (Earth)
To cowl 2 (Key SW -)	D14	\$47	Sheet 2 (IG)
To cowl 2 (Shitit position SW (P))	W18	S48	Sheet 2 (Parking)
To cow 2 Vehicle speed sensor)	X3	S49	Sheet 2 (Vehicle speed sensor)
Connect to E11-E15	E11	W58	To Cowl 2 (STOP)
To cowl 2 (ABS ECU sensor RR (+))	W64	W98	ABS wheel sensor RR (+)
To cowl 2 (ABS ECU sensor RR (-))	W50	W99	ABS wheel sensor RR (-)
To cowl 2 (ABS ECU sensor R: $(+)$)	W66	W102	ABS wheel sensor RL (+)
To cowl 2 (ABS ECU sensor RL (-))	W62	W103	ABS wheel sensor RL (-)
Connect to G6-G7	G6	W195	To cow 2 (Parking brake SW)
$\begin{aligned} & \text { To cowl } 2 \text { (ABS ECU } \\ & \text { GST) } \end{aligned}$	W238	W241	G sensor (GST)
To cowl 2 (ABS ECU GS1)	W239	W242	G sensor (GS1)
$\begin{aligned} & \text { To cowl } 2 \text { (ABS ECU } \\ & \text { GS2) } \end{aligned}$	W240	W243	G sensor (GS2)
To cowl 2 (ABS ECU (+B)	W48	W244	J/B (Fuse IG2)
Connect to W48-W244	W48	W245	6 sensor (162)
Connect to-H59	23	W246	G sensor (Earth)
Connect to Z8-26	28	Z5	Rear combination lamp RH (Tail earth)
Earth (Body earth, Rr RH)	28	26	Rear combination lamp LH (Tail earth)
To cowl 1 (Body earth, cowl)	23	27	Earth (Body earth, Rr RH)
Connect to Z8~76	78	779	License lamp (Earth)
Connected with 2110-	2110	2116	Separation
Connect to Z3-77	23	2196	Electric-powered antenna (Earth)

WIRE CONNECTION, COURTESY LAMP FEED

From		To	
Location	Terminal	Terminal	Location
J/B (Tail fuse - floor)	C2	C7	Rear combination lamp RH (Tail lamp $+B$)
Tail fuse (-)	C5	C8	Tail lamp LH
Buzzer (-)	D16	D7	Courtesy SW (Fr, LH)
Room tamp (-)	D3	07	Courlesy SW (Fr, LH)
Room lamp (-)	D3	D9	Courtesy SW (Fr, LH)
Connect to D3-D7	D3	D9	Courtesy SW (Rr, LH)
Luggage room lamp (+)	D11	D42	Dome fuse (-)
To courtesy (Stop lamp SW (-))	E11	E14	Rear combination lamp (Stop lamp +)
J / B (Rear turn LH)	E4	F5	Rear turn RH
J / B (Rear turn RH)	F6	F7	Rear turn LH
Rear combination tamp RH (Back-up lamp +)	G4	F34	J/B Fuse, Turn
To cowl (Meter, brake)	G6	G7	Parking brake SW (+)
Meter, sheet belt warning	H56	H19	Sheet belt warning SW (Meter)
Meter (Fuel gauge)	H22	H23	Fuel sensor
Connect to Z15~Z41	Z15	H59	Sheet belt warning SW
J/B (Fuse, wiper)	125	126	Rear washer (Motor +)
Relay box (Fuei pump relay)	P5	P6	Fuel purmp (+)
To cowl (IG SW (AH))	P9A	P9	Sub fuse block (30A (+)
Connect to P21-P36	P21	P11	To cowl (Canvas top +)
To cow $\{$ [IG SW (IG)	P22A	P20	Sub fuse block (Holiow fuse 30A (+))
Connect to P21-P31	P21	P22	To front door $\langle\mathrm{P}=\mathrm{W}$ master $S W,+B$)
To floor, master SW (Passenger, UP)	P27	P29	PW Passenger (UP)
To floor, master SW (Passenger, DOWN)	P28	P30	$\begin{aligned} & \text { PN SW (Passenger, } \\ & \text { DOWN) } \end{aligned}$
PN C/B (-)	P21	P31	P/W SW Passenger (+B)
To front door courtesy (Master SW, RR, UP)	P32	P34	$\begin{aligned} & \text { To rear door RH (PW } \\ & \text { SW, UP) } \end{aligned}$
To front door courtesy (Master SW. DOWN)	P33	P35	$\begin{aligned} & \text { To rear door RH (PW } \\ & \text { SW, DOWN) } \end{aligned}$
Hoilow fuse 30A (-)	P21	P36	P/W SW, Passenger (P)
PNW master SW (RL. UP)	P37	P39	PNW SW, Rr LH (UP)
P/W master SW (RL, DOWN)	P38	P40	P/N SW, Rr LH (DOWN)
Connect to P21~P31	P21	P41	PN SW, Rr LH (+B)
Fuse (Power No. 1)	P71	P41	P/W master SW (+)
To front door (Lock SW. Unlock)	Q25	01	Door fock control relay (Unlock)
Lock SW (Lock)	Q24	Q4	Door lock control relay (LOCk)
Connect to Q5~012	05	07	Door lock FL (Lock)
Connect to Q3~013	Q3	09	Door lock FL (Unlock)
Door lock relay (lock)	05	012	Door lock (Lock)
Door lock relay (Unlock)	03	013	Door lock (linlock)

From		T0	
Location	Terminal	Terminal	Location
Sub fuse block (30A (-))	P10	Q16	Door lock control relay $(+B)$
Radio speaker Rr LH (+)	R30	R34	Speaker Rr LH (+)
Radio speaker Rr LH $(-)$	R31	R35	Speaker Rr LH (-)
Connect to W244-W245	W244	W48	To cowl (ABS ECU, IG2)
Connect to E11~E14	E11	W58	To cowl (ABS ECU, Stop)
Connect to G6-G7	G6	W195	To cowl (ABS ECU, Parking brake)
To cowl (ABS ECU GST)	W238	W241	ABS G sensor (GST)
To cowl (ABS ECU GS1)	W239	W242	ABS G sensor (GS1)
To cowi (ABS ECU GS2)	W240	W243	ABS G sensor (GS2)
To cowl (J/B fuse IG2)	W244	W245	ABS G sensor (IG2)
Connect to 23-27	Z3	W246	ABS G sensor (Earth)
Connect to 215-241	260	27	Floor earth
Body earth (Cowl side LH)	215	241	Fuel lank (Earth)
Body earth (Cowl side LH)	215	241	Fuel tank (Earth)
Connect to Z15~Z41	215	260	Door lock controi relay (Earth)
Connect to 260-87	260	761	To front door (PN earth)

HW-58

WIRE CONNECTION, FRONT DOOR RH (Driver's side)

From		To	
Location	Terminal	Terminal	Location
Step lamp (-)	D23	D3	Courtesy SW
Fuse, stop (-)	E9	021	Step lamp (-)
Circuit breaker (power No. 2-)	P21	P22	PW master SW, Front LH (+8)
PN M motor, Front RH (UP)	P25	P23	PN SW, Front RH (UP)
P/W motor, Front RH (DOWN)	P26	P24	PN SW, Front RH (DOWN)
PNW SW, Front LH (UP)	P29	P27	PW master SW. Front LH (UP)
PN SW, Front LH (DOWN)	P30	P28	PW master SW, Front LH (DOWN)
PNN SW, Rear RH (UP)	P34	P32	PN master SW, Rear RH (UP)
PNW SW, Rear RH (DOWN)	P35	P33	$\begin{aligned} & \text { PN master SW, Rear } \\ & \text { RH (DOWN) } \end{aligned}$
PNW SW, Rear LH (UP)	P39	P37	PN master SW, Rear LH (UP)
PN SW, Rear LH (DOWN)	P40	P38	$\begin{aligned} & \text { PN master SW, Rear } \\ & \text { LH (DOWN) } \end{aligned}$
PNW SW (Rear LH +)	P41	P71	Master SW (PN+)
Fuse, Power No. 2	P10	P90	PN master SW, Front LH (IG +)
Electromagnetic lock relay (1)	07	014	Electromagnetic lock (Lock)
Electromagnetic lock relay (7)	09	015	Electromagnetic lock (Unlock)
Door lock controller (Lock)	04	Q24	Electromagnetic lock (Lock +)
Door iock controller (Uflock)	02	Q25	Electromagnetic lock (Uniock +)
Connect to 215-261	215	026	Electromagnetic lock (Earth)
Radio (Speaker FR +)	R10	R11	Speaker FR (+)
Radio (Speaker FR -)	R12	R13	Speaker FR (-)
Remote-controlled door mirror SW (VR)	R19	R24	Remote-controlled door mirror RH (VR)
Remote-controlled door mirror SW (HR)	R21	R25	Remote-controlled door mirror RH (HR)
Remote-controlled door mirror SW (C)	817	R26	Remote-controlled door mirror RH (CR)
Connect to R10-R11	R10	R91	Tweeter (+)
Connect to R12-R13	R12	R92	Tweeter (-)
Body earth	215	Z61	PW master SW, Front LH (Earth)

WIRE CONNECTION, FRONT DOOR LH (Passenger's side)

From		To	
Location	Terminal	Terminal	Location
Power window SW (SU)	P29	P27	Power window master SW (FLU)
Power window SW (SD)	P30	P28	Power window master SW (FLD)
Master SW (PN +)	P71	P31	Power window SW (+ B)
Power window motor FL (UP)	P44	P42	Power window SW (UP)
Power window motor FL (DOWN)	P45	P43	Power window SW (DOWN)
Door lock controller (Lock)	05	07	Electromagnetic lock (Lock +)
Door lock controtler (Unlock)	03	09	Electromagnetic lock (Unlock -)
Radio (Speaker FL +)	R6	R7	Speaker FL +
Radio (Speaker FL-)	R8	R9	Speaker FL -
Remote-controlled door mirror SW (VL)	R18	R22	Remote-controlled door mirror LH (VL)
Remote-controlled door mirror SW (HL)	R20	R23	Remote-controlled door mirror LH (HL)
Remote-controlled door mirror SW (C)	R17	R27	Remote-controlled door mirror LH (CL)
Remote-controlled door mirror SW (F)	R72	R76	Remote-controlled door mirror LH (FL)
Remote-controlled door mirror SW (A)	R73	R77	Remote-controlled door mirror LH (RL)

WIRE CONNECTION, FRONT DOOR RH (Passenger's side)

From		To	
Location	Terminal	Terminal	Location
PW SW (SU)	P29	P27	P/N master SW (FLU)
PW SW (SD)	P30	P28	PM master SW (FLD)
Master SW (P/N +)	P21	P31	PW SW (+B)
P/W motor FL (UP)	P44	P42	P/W SW (UP)
PWN motor FL (DOWN)	P45	P43	PW SW (DOWN)
Door lock controiler (Lock)	05	Q7	Electromagnetic lock (Lock +)
Door lock controiler (Unlock)	Q3	09	Electromagnetic lock (Unlock +)
Radio (Speaker FR +)	R10	R17	Speaker FR +
Radio (Speaker FR -)	R12	R13	Speaker FR -
Remote-conirolled door mirror SW (VR)	R19	R24	Remote-controiled door mirror RH (VB)
Remote-controlled door mirror SW (HR)	R21	R25	Remote-controlled door misror RH (HR)
Remole-controlled door mirror SW (C)	R17	R26	Remole-controlled door mirfor RH (CR)

VIRE CONNECTION, REAR DOOR LH

From		T0	
Location	Terminal	Terminal	Location
PW S SW (+B)	P41	P10	Fuse (Power No. 1)
PNW SW (Master SW SU)	P39	P37	$\begin{aligned} & \text { PW master SW (RL UP } \\ & + \text { +) } \end{aligned}$
P/W SW (Master SW SD)	P40	P38	$\begin{aligned} & \text { PW master SW (RL } \\ & \text { DOWN }+ \text {) } \end{aligned}$
P/W SW (Motor UP +)	P50	P52	PN ${ }^{\text {motor (}}$ (UP +)
$\begin{aligned} & \text { PW SW (Motor DOWN } \\ & + \text { +) } \end{aligned}$	P51	P53	PNW motor (DOWN +)
Door lock relay (Lock +)	05	012	Door lock motor RL (Lock +)
Door lock relay (Unlock $+ \text {) }$	03	013	Door lock motor RL (Unlock +)

WIRE CONNECTION, REAR DOOR RH

From		To	
Location	Terminal	Terminal	Location
P/W SW (+B)	P36	P10	Fuse (Power No. 1)
PN SW (Master SW SU)	P34	P32	PN master SW (RR UP +)
PW SW (Master SW SD)	P35	P33	$\begin{aligned} & \text { PW master SW (RR } \\ & \mathrm{DOWN}+\text {) } \end{aligned}$
PW SW (Motor UP +)	P46	P48	P/N motor (UP +)
$\begin{aligned} & \text { PNW SW (Motor DOWN } \\ & + \text { +) } \end{aligned}$	P47	P49	PN motor (DOWN +)
Door lock relay (Lock +)	05	Q10	Door lock motor RR (Lack +)
Door lock relay (Unlock +)	Q3	011	Door lock motor RR (Unlock +)

WIRE CONNECTION, BACK DOOR No. 1

From		T0	
Location	Terminal	Terminal	Location
Stop lamp SW (-)	E11	E16	High-mount stop lamp (+)
Stop lamp SW (-)	E11	E33	Spoiler, High-mount stop lamp (+)
Connect to 27~2162	27	E34	Spoiler, High-mpount stop lamp (-)
Fuse (Wiper, Washer)	125	129	Rear wiper motor (+)
Rear wiper SW (+)	131	130	Rear wiper motor (-)
Defogger SW (-)	K28	K29	Rear window defogger $(+)$
Body earth (Quarter RH)	27	2162	Back ojoor earth

WIRE CONNECTION, BACK DOOR No. 3

From		To	
Location	Terminal	Terminal	Location
Stop lamp SW (-)	E11	E16	High-mount stop lamp $(+)$
Connect to Z7-Z162	Z7	E17	A igh-mount stop lamp $(-)$
Fuse (Wiper, washer)	125	129	Rear wiper motor (+)
Rear wiper SW (+)	131	130	Rear wiper motor (-)
Defogger SW (-)	K28	K29	Rear defogger (+)
Body earth (Quaarter RH)	Z7	Z162	Back door earth

VIRE CONNECTION, INTERIOR LAMP FEED

From		To	
Location	Terminal	Terminal	Location
Room lamp (-)	D3	D6	Courtesy SW (FR +)
Room lamp (+)	D2	D34	Fuse (Dome)
Canvas top SW (OPEN)	P13	P14	Canvas top (Motor +)
Canvas top SW (CLOSE)	P16	P15	Canvas top (Motor -)
Canvas top SW (+B)	P11	P71	P $/$ master SW (+)
Canvas top SW (E)	P12	Z14A	Body earth (J/C cowl side RH)

WIRE, ENGINE, EFI

TO WIRE, COWL MT

	615	N31	420
мз3 ${ }^{\text {K156 }}$	23	020	H5

TO WIRE, COWL AT

WIRE, ENGINE, CARB.

TO WIRE, COWL AT

TO WIRE, COWL MTT

WIRE, COWL, EFI L.H,D. (EC Spec.)

WIRE, COWL, EFI R.H.D.

HW-69

WIRE, COWL, CARB. L.H.D.

WIRE, COWL, CARB. R.H.D.

WIRE, INSTRUMENT. PANEL

[^0]: []: Australian specifications

[^1]: (1) Brake master cylinder piston seal
 (2) Brake master cylinder reserve tank
 (3) Set bolt
 (4) Gasket
 (5) Brake master cylinder piston assembly No. 1
 (6) Brake master cylinder piston assembly No. 2

